Articles | Volume 6, issue 1
https://doi.org/10.5194/gchron-6-89-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-89-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Erin E. Donaghy
CORRESPONDING AUTHOR
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, United States of America
Michael P. Eddy
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, United States of America
Federico Moreno
Department of Geosciences, University of Arizona, Tucson, AZ 85721, United States of America
Mauricio Ibañez-Mejia
Department of Geosciences, University of Arizona, Tucson, AZ 85721, United States of America
Related authors
No articles found.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
Cited articles
Allen, C. M. and Campbell, I. H.: Identification and elimination of a matrix-induced systematic error in LA-ICP-MS dating of zircon, Chem. Geol., 323–333, 157–165, 2012.
Anderson, T.: Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation, Chem. Geol., 216, 249–270, https://doi.org/10.1016/j.chemgeo.2004.11.013, 2005.
Bateman, H.: Solution of a system of differential equations occurring in the theory of radioactive transformations, P. Camb. Philos. Soc., 15, 423–427, 1910.
Black, L. P.: Recent Pb loss in zircon: a natural or laboratory-induced phenomenon?, Chem. Geol., 65, 25–33, 1987.
Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205, 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003, 2004.
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb redux, Geochem. Geophy. Geosy., 12, Q0AA19, https://doi.org/10.1029/2010GC003479, 2011.
Carrapa, B.: Resolving tectonic problems by dating detrital minerals, Geology, 38, 191–192, https://doi.org/10.1130/focus022010.1, 2010.
Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C.: Alpha-decay induced fracturing in zircon: The transition from the crystalline to metamict state, Science, 236, 1556–1559, 1987.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U-Pb isotopic dilution geochronology (EARTHTIME tracer calibration part 1), Geochim. Cosmochim. Ac., 164, 464–480, 2015.
Coutts, D. S., Matthews, W. A., and Hubbard, S. M.: Assessment of widely used methods to derive depositional ages from detrital zircon populations, Geosci. Front., 10, 1421–1435, 2019.
Crowley, Q. G., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., and Benn, K.: Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology, Minerals, 4, 503–518, https://doi.org/10.3390/min4020503, 2014.
Dickin, A. P.: Radiogenic Isotope Geology, 2nd Edn., Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781139165150, 2005.
Dickinson, W. R. and Gehrels, G. E.: Use of U-Pn ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database, Earth Planet. Sc. Lett., 288, 115–125, 2009.
Eddy, M. P., Ibañez-Mejia, M., Burgess, S. D., Coble, M. A., Cordani, U. G., DesOrmeau, J., Gehrels, G. E., Li, X., MacLennan, S., Pecha, M., Sato, K., Schoene, B., Valencia, V. A., Vervoort, J. D., and Wang, T.: GHR1 Zircon – A New Eocene Natural Reference Material for Microbeam U-Pb Geochronology and Hf Isotopic Analysis of Zircon, Geostand. Geoanal. Res., 43, 113–132, https://doi.org/10.1111/ggr.12246, 2019.
Ewing, R. C., Meldrum, A., Wang, L., Weber, W. J., and Corrales, I. R.: Radiation effects in zircon, in: Zircon. Rev. Mineral. Geochem., edited by: Hanchar, J. M. and Hoskin, P. W. O., 53, Mineral Society of America, 277–303, https://doi.org/10.2113/0530387, 2003.
Fedo, C. M., Sircombe, K., and Rainbird, R.: Detrital zircon analysis of the sedimentary record, Rev. Mineral. Geochem., 53, 277–303, https://doi.org/10.2113/0530277, 2003.
Garver, J. I. and Kamp, P. J. J.: Integration of zircon color and zircon fission track zonation patterns in orogenic belts: Application of Southern Alps, New Zealand, Tectonophysics, 349, 203–219, 2002.
Gehrels, G. E.: Detrital zircon U-Pb geochronology: current methods and new opportunities, in: Tectonics of Sedimentary Basins: Recent Advances, edited by: Busby, C. and Azor, A., 47–62, Chichester, UK, Wiley-Blackwell, https://doi.org/10.1002/9781444347166.ch2, 2012.
Gehrels, G. E.: Detrital zircon U-Pb Geochronology Applied to Tectonics, Annu. Rev. Earth Planet. Sc., 42, 127–149, https://doi.org/10.1146/annurev-earth-050212-124012, 2014.
Gehrels, G. E., Valencia, V., and Ruiz, J.: Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry, Geochem. Geophy. Geosy., 9, Q03017, https://doi.org/10.1029/2007GC001805, 2008.
Gehrels, G. E., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., and Patchett, J.: U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution, Geol. Soc. Am. Bull., 121, 1341–1361, 2009.
Ginster, U., Reiners, P. W., Nasdala, L., and Chanmuang, C. N.: Annealing kinetics of radiation damage in zircon, Geochim. Cosmochim. Ac., 15, 225–246, 2019.
Goldich, S. S. and Mudrey Jr., M. G.: Dilatancy model for discordant U-Pb zircon ages, in: Contributions to Recent Geochemistry and Analytical Chemistry (Vinogradov Volume), edited by: Tugarinov, A. I., PASCAL, PASCALGEODEBRGM7720087455, 415–418, 1972.
Hay, D. C. and Dempster, T. J.: Zircon alteration, formation, and preservation in sandstones, Sedimentology, 56, 2175–2191, https://doi.org/10.1111/j.1365-3091.2009.01075.x, 2009a.
Herriott, T. M., Crowley, J. L., Schmitz, M. D., Marwan, W. A., and Gillis, R. J.: Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA, Geology, 47, 1044–1048, https://doi.org/10.1130/G46312.1, 2019.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: Systematics in Terrestrial Uranium-Bearing Minerals, Science, 335, 1610–1614, 2012.
Hietpas, J., Samson, S., Moecher, D., and Chakraborty, S.: Emhancing tectonic and provenance information from detrital zircon studies: assessing terrane-scale sampling and grain-scale characterization, J. Geol. Soc. Lond., 168, 309–318, 2011.
Ibañez-Mejia, M., Pullen, A., Pepper, M., Urbani, F., Ghoshal, G., and Ibañes-Mejia, J. C.: Use and absue of detrital zircon U-Pb geochronology – A case from the Rio Orinoco delta, eastern Venezuela, Geology, 46, 1019–1022, 2018.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision Measurement of Half-Life and Specific Activities of 235U and 238U, Phys. Rev. C, 4, 1889, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Keller, C. B., Boehnke, P., Schoene, B., and Harrison, M.: Stepwise chemical abrasion-isotope dilution-thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon, Geochronology, 1, 85–97, 2019.
Kramers, J., Frei, R., Newville, M., Kober, B., and Villa, I.: On the valency state of radiogenic lead in zircon and its consequences, Chem. Geol., 261, 4–11, https://doi.org/10.1016/j.chemgeo.2008.09.010, 2009.
Krogh, T. E.: A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Ac., 87, 485–494, 1973.
Malusa, M. G., Carter, A., Limoncelli, M., Villa, I. M., and Garzanti, E.: Bias in detrital zircon geochronology and thermochronometry, Chem. Geol., 359, 90–107, 2013.
Marillo-Sialer, E., Woodhead, J., Hanchar, J. M., Reddy, S. M., Greig, A., Hergt, J., and Kohn, B. P.: An investigation of laser-induced zircon “matrix effect”, Chem. Geol., 438, 11–24, 2016.
Marillo-Sialer, E., Woodhead, J., Hergt, J., Greig, A., Guillong, M., Gleadow, A., Evans, N., and Paton, C.: The zircon “matrix effect”: evidence for an ablation rate control on the accuracy of U-Pb age determinations by LA-ICP-MS, J. Anal. Atom. Spectrom., 29, 981–989, 2014.
Marsellos, A. E. and Garver, J. J.: Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation, Am. Mineral., 95, 1192–1201, 2010.
Mattinson, J. M.: A study of complex discordance in zircons using step-wise dissolution techniques, Contrib. Mineral. Petr., 116, 117–129, 1994.
Mattinson, J. M.: Zircon U–Pb chemical-abrasion (“CA-TIMS”) method: Combined annealing and multi-step dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47–56, https://doi.org/10.1016/j.chemgeo.2005.03.011, 2005.
Mattinson, J. M.: Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed system natural zircon samples, Chem. Geol., 275, 186–198, https://doi.org/10.1016/j.chemgeo.2010.05.007, 2010.
McKanna, A. J., Koran, I., Schoene, B., and Ketcham, R. A.: Chemical abrasion: the mechanics of zircon dissolution, Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, 2023.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME tracer calibration II), Geochim. Cosmochim. Ac., 164, 481–501, 2015.
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R.: Age and timing of the Permian mass extinctions: dating of closed-system zircons, Science, 305, 1760–1763, https://doi.org/10.1126/science.1101012, 2004.
Nasdala, L., Hanchar, J. M., Kronz, A., and Whitehouse, M. J.: Long-term stability of alpha particle damage in natural zircon, Chem. Geol., 220, 83–103, https://doi.org/10.1016/j.chemgeo.2005.03.012, 2005.
Nemchin, A. and Cawood, P.: Discordance of the U-Pb system in detrital zircons: Implication for provenance studies of sedimentary rocks, Sediment. Geol., 182, 143–162, 2005.
Pullen, A., Ibañez-Mejia, M., Gehrels, G. E., Ibanez-Mejia, J. C., and Pecha, M.: What happens when n = 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations, J. Anal. Spectrom., 29, 971–980, https://doi.org/10.1039/C4JA00024B, 2014.
Pullen, A., Ibañez-Mejia, M., Gehrels, G. E., Giesler, D., and Pecha, M.: Optimization of a Laser Ablation-Single Collector-Inductively Coupled Plasma-Mass Spectrometer (Thermo Element 2) for Accurate, Precise, and Efficient Zircon U-Th-Pb Geochronology, Geochem. Geophy. Geosy., 19, 3689–3705, 2018.
Reiners, P. W.: Zircon (U-Th)/He Thermochronometry, Rev. Mineral. Geochem., 58, 151–179, 2005.
Satkoski, A. M., Wilkinson, B. H., Hietpas, J., and Samson, S. D.: Likeness among detrital zircon populations – An approach to the comparison of age frequency data in time and space, Geol. Soc. Am. Bull., 125, 1783–1799, 2013.
Saylor, J. E. and Sundell, K. E.: Quantifying comparison of large detrital geochronology data sets, Geosphere, 12, 1–18, 2016.
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015.
Schmitz, M. D. and Bowring, S. A.: U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks, Geochim. Cosmochim. Ac., 65, 2571–2587, 2001.
Schoene, B.: U-Th-Pb Geochronology, Treatise on geochemistry, 2nd Edn., edited by: Rudnick, R., Elsevier, https://doi.org/10.1016/B978-0-08-095975-7.00310-7, 2014.
Sharman, G. R. and Malkowski, M. A.: Needles in a haystack: Detrital zircon U-Pb ages and the maximum depositional age of modern global sediment, Earth Sci. Rev., 203, https://doi.org/10.1016/j.earscirev.2020.103109, 2020.
Sharman, G. R. and Malkowski, M. A.: Modeling apparent Pb loss in zircon U-Pb geochronology, Geochronology, 6, 37–51, 2023.
Smith, T. M., Saylor, J. E., Lapen, T. J., Leary, R. J., and Sundell, K. E.: Large detrital zircon data set investigation and provenance mapping: Local versus regional and continental sediment sources before, during, and after Ancestral Rocky Mountain deformation, GSA Bulletin, 135, 2901–2921, https://doi.org/10.1130/B36285.1, 2023.
Sláma, J. and Kosler, J.: Effects of sampling and mineral separation on accuracy of detrital zircon studies, Geochem. Geophy. Geosy., 13, Q05007, https://doi.org/10.1029/2012GC004106, 2012.
Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plesovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1–35, https://doi.org/10.1016/j.chemgeo.2007.11.005, 2008.
Steely, A. N., Hourigan, J. K., and Juel, E.: Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS: Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation, Chem. Geol., 372, 92–108, 2014.
Stern, R. A., Bodorkos, S., Kama, S. L., Hickman, A. H., and Corfu, F.: Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating, Geostand. Geoanal. Res., 33, 145–168, https://doi.org/10.1111/j.1751-908X.2009.00023.x, 2009.
Sundell, K. E., Gehrels, G. E., and Pecha, M. E.: Rapid U-Pb Geochronology by Laser Ablation Multi-Collector ICP-MS, Geostand. Geoanal. Res., 45, 37–57, 2021.
Vermeesch, P.: Maximum depositional age estimation revisted, Geosci. Front., 12, 843–850, 2021.
Von Quadt, A., Dallhofer, D., Guilong, M., Peytcheva, I., Waelle, M., and Sakata, S.: U-Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: impact for their geological interpretation, J. Anal. Atom. Spectrom., 29, 1618–1629, https://doi.org/10.1039/C4JA00102H, 2014.
Wang, J. W., Gehrels, G., Kapp, P., and Sundell, K.: Evidence for regionally continuous Early Cretaceous sinistral shear zones along the western flank of the Coast Mountains, coastal British Columbia, Canada, Geosphere, 19, 139–162, 2022.
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U-Pb age, Chem. Geol., 511, 1–10, https://doi.org/10.1016/j.chemgeo.2019.02.026, 2019.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandard. Newslett., 19, 1–23, 1995.
Wotzlaw, J. F., Schaltegger, U., Frick, D. A., Dungan, M. A., Gerdes, A., and Gunther, D.: Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption, Geology, 41, 867–870, 2013.
Editor
This study is an important contribution to high precision geochronology. The study highlights the criteria for selecting the most suitable zircon material and it analytical treatment to obtain precise and accurate mineral ages.
This study is an important contribution to high precision geochronology. The study highlights...
Short summary
Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in zircon U–Pb geochronology. However, CA has yet to be applied to large-n detrital zircon (DZ) analyses. We show that CA does not negatively impact or systematically bias U–Pb dates, improves the resolution of age populations defined by 206Pb/238U dates, and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates.
Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in...