Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An evaluation of Deccan Traps eruption rates using geochronologic data
Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
Michael P. Eddy
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
C. Brenhin Keller
Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
Kyle M. Samperton
Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Related authors
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024, https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Short summary
Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in zircon U–Pb geochronology. However, CA has yet to be applied to large-n detrital zircon (DZ) analyses. We show that CA does not negatively impact or systematically bias U–Pb dates, improves the resolution of age populations defined by 206Pb/238U dates, and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates.
Kalin T. McDannell and C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-3, https://doi.org/10.5194/gchron-2024-3, 2024
Publication in GChron not foreseen
Short summary
Short summary
We introduce a new statistical method for determining the time of "peak cooling" in thermochronological inversions. Specifically, we focus on the time-temperature paths that intersect the half-maximum cooling isotherm, signifying the zenith or most rapid cooling within a defined interval. The resultant interpolated time distribution provides a systematic metric, particularly applicable for evaluating model cooling characterized by relatively smooth histories featuring a single inflection point.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2023-9, https://doi.org/10.5194/gchron-2023-9, 2023
Publication in GChron not foreseen
Short summary
Short summary
As a result of increasing precision and accuracy in geochronology, interpreting complicated age spectra has become increasingly important, since individual mineral ages often do not directly date the actual geologic process of interest. Here we propose a method for estimating the age of eruption or deposition of a set of minerals dated by the U-Pb system which, in contrast to previous approaches, remains accurate even when the dated minerals have experienced loss of the daughter product Pb.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Cited articles
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V.: Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science, 208, 1095–1108, 1980.
Andersen, N. L., Jicha, B. R., Singer, B. S., and Hildreth, W.: Incremental heating of
Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage,
P. Natl. A. Sci. USA, 114, 12407, https://doi.org/10.1073/pnas.1709581114, 2017.
Barry, T., Kelley, S., Reidel, S., Camp, V., Self, S., Jarboe, N., Duncan, R., Renne, P., Ross, M., and Wolff, J.: Eruption chronology of the Columbia River Basalt Group, in: The Columbia River Flood Basalt Province, Geological Society of America, Special Paper, 497, 45–66, 2013.
Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., and Walsh, J. N.: Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India, B. Volcanol., 48,
61–83, https://doi.org/10.1007/BF01073513, 1986.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an
autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Black, B. A. and Gibson, S. A.: Deep Carbon and the Life Cycle of Large Igneous
Provinces, Elements, 15, 319–324, https://doi.org/10.2138/gselements.15.5.319, 2019.
Black, B. A. and Manga, M.: Volatiles and the tempo of flood basalt magmatism, Earth
Planet. Sc. Lett., 458, 130–140, https://doi.org/10.1016/j.epsl.2016.09.035, 2017.
Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J.,
McHone, G., Rasbury, E. T., and Et-Touhami, M.: Zircon U−Pb Geochronology Links the
End-Triassic Extinction with the Central Atlantic Magmatic Province, Science, 340, 941–945, 2013.
Bond, D. P. G. and Wignall, P. B.: Large igneous provinces and mass extinctions: An
update, Geol. S. Am. S., 505, 29–55, 2014.
Burgess, S.: Deciphering mass extinction triggers, Science, 363, 815–816, 2019.
Burgess, S., Muirhead, J., and Bowring, S.: Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 1–6, 2017.
Burgess, S. D. and Bowring, S. A.: High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction, Sci. Adv., 1, e1500470, https://doi.org/10.1126/sciadv.1500470, 2015.
Byrnes, J. S. and Karlstrom, L.:
Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism, Sci. Adv., 4, eaao2994, https://doi.org/10.1126/sciadv.aao2994, 2018.
Chenet, A., Quidelleur, X., Fluteau, F., Courtillot, V., and Bajpai, S.: 40K−40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration, Earth Planet. Sc. Lett., 263, 1–15, https://doi.org/10.1016/j.epsl.2007.07.011, 2007.
Chenet, A.-L., Fluteau, F., Courtillot, V., Gérard, M., and Subbarao, K. V.: Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200 m-thick section in the Mahabaleshwar escarpment, J. Geophys. Res., 113, B04101, https://doi.org/10.1029/2006jb004635, 2008.
Chenet, A.-L., Courtillot, V., Fluteau, F., Gérard, M., Quidelleur, X., Khadri,
S. F. R., Subbarao, K. V., and Thordarson, T.: Determination of rapid Deccan eruptions across the
Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis
of eight new sections and synthesis for a 3500 m-thick composite section,
J. Geophys. Res., 114, B06103, https://doi.org/10.1029/2008jb005644, 2009.
Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A., and Jones, M. M.: Direct
high-precision U−Pb geochronology of the end-Cretaceous extinction and calibration of
Paleocene astronomical timescales, Earth Planet. Sc. Lett., 452, 272–280, 2016.
Condon, D., Schoene, B., McLean, N., Bowring, S., and Parrish, R.: Metrology and
traceability of U−Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I),
Geochim. Cosmochim. Ac., 164, 464–480, 2015.
Corfu, F.: A century of U−Pb geochronology: The long quest towards concordance,
Geol. Soc. Am. Bull., 125, 33–47, 2013.
Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J., and Cappetta, H.:
Deccan flood basalts at the Cretaceous/Tertiary boundary?, Earth Planet. Sc. Lett., 80, 361–374,
https://doi.org/10.1016/0012-821X(86)90118-4, 1986.
Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M. G., and Besse, J.:
Deccan flood basalts and the Cretaceous/Tertiary boundary, Nature, 333, 843–846, 1988.
Davies, J., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and Schaltegger, U.:
End-Triassic mass extinction started by intrusive CAMP activity, Nat. Commun., 8, 15596, https://doi.org/10.1038/ncomms15596, 2017.
Duraiswami, R. A., Sheth, H., Gadpallu, P., Youbi, N., and Chellai, E. H.: A simple
recipe for red bole formation in continental flood basalt provinces: weathering of flow-top and
flow-bottom breccias, Arab. J. Geosci., 13, 1–14, 2020.
Eddy, M. P., Schoene, B., Samperton, K. M., Keller, G., Adatte, T., and Khadri, S. F.: U−Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province,
Malwa Plateau, India, Earth Planet. Sc. Lett., 540, 116249, https://doi.org/10.1016/j.epsl.2020.116249, 2020.
Ellis, B. S., Mark, D. F., Pritchard, C. J., and Wolff, J. A.: Temporal dissection of
the Huckleberry Ridge Tuff using the dating technique,
Quat. Geochronol., 9, 34–41, 2012.
Ernst, R. E. and Youbi, N.: How Large Igneous Provinces affect global climate,
sometimes cause mass extinctions, and represent natural markers in the geological record,
Palaeogeogr. Palaeocl., 478, 30–52, 2017.
Galeotti, S., Sahy, D., Agnini, C., Condon, D., Fornaciari, E., Francescone, F.,
Giusberti, L., Pälike, H., Spofforth, D. J. A., and Rio, D.: Astrochronology and
radio-isotopic dating of the Alano di Piave section (NE Italy), candidate GSSP for the Priabonian
Stage (late Eocene), Earth Planet. Sc. Lett., 525, 115746, https://doi.org/10.1016/j.epsl.2019.115746, 2019.
Ganino, C. and Arndt, N. T.: Climate changes caused by degassing of sediments during
the emplacement of large igneous provinces, Geology, 37, 323–326, 2009.
Ghosh, P., Sayeed, M. R. G., Islam, R., and Hundekari, S. M.: Inter-basaltic clay (bole
bed) horizons from Deccan traps of India: Implications for palaeo-weathering and palaeo-climate
during Deccan volcanism, Palaeogeogr. Palaeocl., 242, 90–109, https://doi.org/10.1016/j.palaeo.2006.05.018,
2006.
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat. Soc. C.-Appl., 57, 399–418, 2008.
Henehan, M. J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D. N., Rae,
J. W. B., Witts, J. D., Landman, N. H., Greene, S. E., Huber, B. T., Super, J. R., Planavsky,
N. J., and Hull, P. M.: Rapid ocean acidification and protracted Earth system recovery followed
the end-Cretaceous Chicxulub impact, P. Natl. Acad. Sci. USA, 116, 22500,
https://doi.org/10.1073/pnas.1905989116, 2019.
Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, Z., A.,
Jacobsen, S. B., and Boynton, W. V.: Chicxulub crater: a possible Cretaceous/Tertiary boundary
impact crater on the Yucatan Peninsula, Mexico, Geology, 19, 867–871, 1991.
Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson,
P. A., Blum, P., Alegret, L., Batenburg, S. J., and Bown, P. R.: On impact and volcanism across
the Cretaceous–Paleogene boundary, Science, 367, 266–272, 2020.
Jay, A. E. and Widdowson, M.: Stratigraphy, structure and volcanology of the SE Deccan
continental flood basalt province: implications for eruptive extent and volumes,
J. Geol. Soc. London, 165, 177–188, 2008.
Kale, V. S., Dole, G., Shandilya, P., and Pande, K.: Stratigraphy and correlations in
Deccan Volcanic Province, India: Quo vadis?, Bull. Geol. Soc. Am., 132, 588–607, 2020.
Kasbohm, J. and Schoene, B.: Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum, Sci. Adv., 4, eaat8223, https://doi.org/10.1126/sciadv.aat8223, 2018.
Kasbohm, J., Schoene, B., and Burgess, S.: Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement, in: Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, edited by: Ernst, R. E., Dickson, A. J., and Bekker, A., American Geophysical Union, John Wiley and Sons, Inc., 27–82, https://doi.org/10.1002/9781119507444.ch2, 2020.
Keller, C. B.: Chron.jl: A Bayesian framework for integrated eruption age and age-depth modelling, OSF (Open Science Framework), https://doi.org/10.17605/osf.io/TQX3F, 2018.
Keller, C. B., Schoene, B., and Samperton, K. M.:
A stochastic sampling approach to zircon eruption age interpretation,
Geochem. Perspect. Lett.,
8, 31–35, 2018.
Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S.: Main Deccan
volcanism phase ends near the K–T boundary: Evidence from the Krishna–Godavari Basin, SE India,
Earth Planet. Sc. Lett., 268, 293–311, https://doi.org/10.1016/j.epsl.2008.01.015, 2008.
Kerr, A. C. and Ward, P. D.: A Dominant Role for The K-Pg Impact, available at: https://science.sciencemag.org/content/363/6429/862/tab-e-letters, last access: 17 August 2019.
Khadri, S., Subbarao, K., Hooper, P., and Walsh, J.: Stratigraphy of Thakurvadi
formation, western Deccan basalt province, India, Deccan flood basalts, Geol. Soc. Ind. Mem., 10,
281–304, 1988.
Knight, K. B., Renne, P. R., Halkett, A., and White, N.:
dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps, Earth
Planet. Sc. Lett., 208, 85–99, https://doi.org/10.1016/s0012-821x(02)01154-8, 2003.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans,
J. R.: Synchronizing rocks clocks of Earth history, Science, 320, 500–504,
https://doi.org/10.1126/science.1154339 2008.
Kwon, J., Min, K., Bickel, P. J., and Renne, P. R.: Statistical methods for jointly
estimating the decay constant of 40K and the age of a dating standard, Math. Geol., 34,
457–474, 2002.
Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., Hurtgen, M. T., Ankney, M. E.,
Petersen, S. V., Tobin, T. S., Kitch, G. D., and Wang, J.: Calcium isotope evidence for
environmental variability before and across the Cretaceous–Paleogene mass extinction, Geology, 48,
34–38, 2020.
Machlus, M. L., Shea, E. K., Hemming, S. R., Ramezani, J., and Rasbury, E. T.: An
assessment of sanidine from the Fire Clay tonstein as a Carboniferous
monitor standard and for inter-method comparison to U−Pb
zircon geochronology, Chem. Geol., 539, 119485, https://doi.org/10.1016/j.chemgeo.2020.119485, 2020.
Mahood, G. A. and Benson, T. R.: Using ages of
intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the
Columbia River Basalt Group, Earth Planet. Sc. Lett., 459, 340–351, 2017.
Mark, D. F., Renne, P. R., Dymock, R. C., Smith, V. C., Simon, J. I., Morgan, L. E.,
Staff, R. A., Ellis, B. S., and Pearce, N. J.: High-precision dating
of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary, Quat. Geochronol.,
39, 1–23, 2017.
Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J. H., Chiaradia, M., Youbi, N., Bertrand, H., Reisberg, L., Merle, R., and Jourdan, F.: The Central Atlantic Magmatic Province (CAMP): A Review, in: The Late Triassic World, edited by: Tanner, L., Topics in Geobiology, vol 46, Springer, Cham, https://doi.org/10.1007/978-3-319-68009-5_4, 2018.
Mattinson, J. M.: Revising the “gold standard” – the uranium decay constants of Jaffey et al., 1971, Eos Trans. AGU, Spring Meet. Suppl., Abstract V61A-02, 2000.
Mattinson, J. M.: Zircon U−Pb chemical-abrasion (“CA-TIMS”) method: combined
annealing and multi-step dissolution analysis for improved precision and accuracy of zircon ages,
Chem. Geol., 220, 47–56, 2005.
Mattinson, J. M.: Analysis of the relative decay constants of 235U and 238U by
multi-step CA-TIMS measurements of closed-system natural zircon samples, Chem. Geol., 275,
186–198, 2010.
McDougall, I. and Harrison, T. M.: Geochronology and Thermochronology by the method, 2nd edn., Oxford University Press, New York, NY, 1999.
McLean, D. M.: Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions, Cretaceous Res., 6, 235–259, 1985.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties
in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME
Tracer Calibration Part II), Geochim. Cosmochim. Ac., 164, 481–501, 2015.
Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R., and McKee, M. L.:
No evidence for a large atmospheric CO2 spike across the Cretaceous–Paleogene boundary,
Geophys. Res. Lett.,
46, 3462–3472, 2019.
Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R.: A test for systematic errors in geochronology through comparison with U−Pb analysis of a 1.1 Ga rhyolite, Geochim. Cosmochim. Ac., 64, 73–98, 2000.
Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G., Denn, F. M., Doelling, D., and
Smith, W.: Radiative climate forcing by the Mount Pinatubo eruption, Science, 259, 1411–1415,
1993.
Mitchell, C. and Widdowson, M.: A geological map of the southern Deccan Traps, India and its structural implications, J. Geol. Soc. London, 148, 495–505, 1991.
Montanari, A. and Coccioni, R.: The serendipitous discovery of an extraterrestrial iridium anomaly at the Cretaceous–Paleogene boundary in Gubbio and the rise of a far-reaching theory,
B. Soc. Paleontol. Ital., 58, 78, 2019.
Parisio, L., Jourdan, F., Marzoli, A., Melluso, L., Sethna, S. F., and Bellieni, G.:
ages of alkaline and tholeiitic rocks from the northern Deccan
Traps: implications for magmatic processes and the K–Pg boundary, J. Geol. Soc. London, 173,
679–688, 2016.
Parnell, A. C., Buck, C. E., and Doan, T. K.:
A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction,
Quaternary Sci. Rev.,
30, 2948–2960, https://doi.org/10.1016/j.quascirev.2011.07.024, 2011.
Parsons-Davis, T., Wimpenny, J., Keller, C. B., Thomas, K., Samperton, K. M., Renne, P. R., Mundil, R., Moody, K., Knight, K., and Kristo, M. J.:
New measurement of the 238U decay constant with inductively coupled plasma mass spectrometry,
J. Radioanal. Nucl. Ch.,
318, 711–721, 2018.
Rampino, M. R. and Caldeira, K.:
Antipodal hotspot pairs on the Earth,
Geophys. Res. Lett.,
19, 2011–2014, 1992.
Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., and Schoene, B.:
Geochronology and thermochronology,
John Wiley & Sons, Hoboken, NJ, 2017.
Renne, P.: Interactive comment on “An evaluation of Deccan Traps eruptions rates using geochronologic data” by Blair Schoene et al., Geochronology Discuss., https://doi.org/10.5194/gchron-2020-11-RC3, 2020.
Renne, P. R., Karner, D. B., and Ludwig, K. R.: Absolute ages aren't exactly, Science,
282, 1840–1841, 1998.
Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R.: Joint determination of
40K decay constants and for the Fish Canyon sanidine standard, and
improved accuracy for geochronology, Geochim. Cosmochim. Ac., 74,
5349–5367, 2010.
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K.:
Response to the comment by WH Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for geochronology” by P. R. Renne et al. (2010), Geochim. Cosmochim. Ac., 75, 5097–5100, 2011.
Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell III, W. S., Morgan, L. E., Mundil, R., and Smit, J.:
Time scales of critical events around the Cretaceous–Paleogene boundary,
Science,
339, 684–687, https://doi.org/10.1126/science.1230492, 2013.
Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L., and Pande,
K.: State shift in Deccan volcanism at the Cretaceous–Paleogene boundary, possibly induced by
impact, Science, 350, 76–78, 2015.
Ricci, J., Quidelleur, X., Pavlov, V., Orlov, S., Shatsillo, A., and Courtillot, V.:
New and K−Ar ages of the Viluy traps (Eastern Siberia):
further evidence for a relationship with the Frasnian–Famennian mass extinction,
Palaeogeogr. Palaeocl., 386, 531–540, 2013.
Richards, M. A., Alvarez, W., Self, S., Karlstrom, L., Renne, P. R., Manga, M., Sprain,
C. J., Smit, J., Vanderkluysen, L., and Gibson, S. A.: Triggering of the largest Deccan eruptions
by the Chicxulub impact, Geol. Soc. Am. Bull., 127, 1507–1520, 2015.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K.: A refined
astronomically calibrated age for Fish Canyon sanidine, Earth Planet. Sc. Lett., 311, 420–426, 2011.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.
Sahy, D., Condon, D. J., Hilgen, F. J., and Kuiper, K. F.: Reducing Disparity in Radio-Isotopic and Astrochronology-Based Time Scales of the Late Eocene and Oligocene, Paleoceanography, 32, 1018–1035, https://doi.org/10.1002/2017PA003197, 2017.
Sayyed, M., Pardeshi, R., and Islam, R.: Palaeoweathering characteristics of an
intrabasaltic red bole of the Deccan Flood Basalts near Shrivardhan of western coast of India,
J. Earth Syst. Sci., 123, 1717–1728, 2014.
Schaltegger, U., Schmitt, A., and Horstwood, M.: zircon geochronology by
ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities,
Chem. Geol., 402, 89–110, 2015.
Schöbel, S., de Wall, H., Ganerød, M., Pandit, M. K., and Rolf, C.:
Magnetostratigraphy and 40Ar−39Ar geochronology of the Malwa Plateau region (Northern Deccan
Traps), central western India: Significance and correlation with the main Deccan Large Igneous
Province sequences, J. Asian Earth Sci., 89, 28–45, https://doi.org/10.1016/j.jseaes.2014.03.022, 2014.
Schoene, B.: geochronology, in: Treatise on Geochemistry,
edited by: Rudnick, R., Elsevier, Oxford, UK, 341–378, 2014.
Schoene, B., Crowley, J. L., Condon, D. C., Schmitz, M. D., and Bowring, S. A.:
Reassessing the uranium decay constants for geochronology using ID-TIMS U−Pb data,
Geochim. Cosmochim. Ac., 70, 426–445, 2006.
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.: Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 000 year level, Geology, 38, 387–390, https://doi.org/10.1130/G30683.1, 2010.
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A.,
Khadri, S. F., and Gertsch, B.: U−Pb geochronology of the Deccan Traps and relation to the
end-Cretaceous mass extinction, Science, 347, 182–184, 2015.
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., and
Khadri, S. F. R.: U−Pb constraints on pulsed eruption of the Deccan Traps across the
end-Cretaceous mass extinction, Science, 363, 862, https://doi.org/10.1126/science.aau2422, 2019.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R.,
Bralower, T. J., Christeson, G. L., Claeys, P., and Cockell, C. S.: The Chicxulub asteroid impact
and mass extinction at the Cretaceous–Paleogene boundary, Science, 327, 1214–1218, 2010.
Self, S., Blake, S., Sharma, K., Widdowson, M., and Sephton, S.: Sulfur and chlorine in
late Cretaceous Deccan magmas and eruptive gas release, Science, 319, 1654–1657,
https://doi.org/10.1126/science.1152830, 2008.
Self, S., Schmidt, A., and Mather, T. A.: Emplacement characteristics, time scales, and
volcanic gas release rates of continental flood basalt eruptions on Earth, Geol. S. Am. S., 505,
319–337, 2014.
Sepúlveda, J., Alegret, L., Thomas, E., Haddad, E., Cao, C., and Summons, R. E.:
Stable Isotope Constraints on Marine Productivity Across the Cretaceous–Paleogene Mass Extinction,
Paleoceanogr. Paleoclimatol., 34, 1195–1217, https://doi.org/10.1029/2018pa003442, 2019.
Shellnutt, J. G., Denyszyn, S. W., and Mundil, R.: Precise age determination of mafic
and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China), Gondwana
Res., 22, 118–126, 2012.
Sheth, H., Vanderkluysen, L., Demonterova, E. I., Ivanov, A. V., and Savatenkov, V. M.:
Geochemistry and geochronology of the Nandurbar-Dhule mafic dyke
swarm: Dyke-sill-flow correlations and stratigraphic development across the Deccan flood basalt
province, Geol. J., 54, 157–176, 2019.
Simon, J. I., Renne, P. R., and Mundil, R.: Implications of pre-eruptive magmatic
histories of zircons for U−Pb geochronology of silicic extrusions, Earth Planet. Sc. Lett.,
266, 182–194, 2008.
Smit, J. and Hertogen, J.:
An extraterrestrial event at the Cretaceous–Tertiary boundary,
Nature,
285, 198–200, 1980.
Sprain, C. J.: Interactive comment on “An evaluation of Deccan Traps eruptions rates using geochronologic data” by Blair Schoene et al., Geochronology Discuss., https://doi.org/10.5194/gchron-2020-11-RC2, 2020.
Sprain, C. J., Renne, P. R., Clemens, W. A., and Wilson, G. P.: Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana, Bulletin, 130, 1615–1644, 2018.
Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., and Mittal, T.:
The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary,
Science,
363, 866–870, 2019.
Subbarao, K., Bodas, M., Khadri, S., and Beane, J.: Penrose Deccan 2000, Field Excursion Guide to the Western Deccan Basalt Province. Penrose Field Guides, Geol. Soc. of India, Bangalore, 2000.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, 2004.
Svensen, H., Planke, S., and Corfu, F.: Zircon dating ties NE Atlantic sill emplacement
to initial Eocene global warming, J. Geol. Soc. London, 167, 433–436, 2010.
Svensen, H., Corfu, F., Polteau, S., Hammer, Ø., and Planke, S.: Rapid magma
emplacement in the Karoo large igneous province, Earth Planet. Sc. Lett., 325, 1–9, 2012.
Thordarson, T. and Self, S.: The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes?, J. Geophys. Res.-Sol. Ea., 103, 27411–27445, 1998.
Villeneuve, M., Sandeman, H. A., and Davis, W. J.: A method for intercalibration of and 40Ar−39Ar ages in the Phanerozoic, Geochim. Cosmochim. Ac., 64, 4017–4030, 2000.
Voosen, P.: Did volcanic eruptions help kill off the dinosaurs?, AAAS, Washington, D.C., https://doi.org/10.1126/science.aax1020, 2019.
Widdowson, M., Walsh, J. N., and Subbarao, K. V.: The geochemistry of Indian bole horizons: palaeoenvironmental implications of Deccan intravolcanic palaeosurfaces, Geological Society, London, Special Publications, 120, 269–281, https://doi.org/10.1144/gsl.sp.1997.120.01.17, 1997.
Wotzlaw, J.-F., Schaltegger, U., Frick, D. A., Dungan, M. A., Gerdes, A., and Günther, D.: Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption, Geology, 41, 867–870, 2013.
Wright, A. J., Edwards, R. J., van de Plassche, O., Blaauw, M., Parnell, A. C., van der Borg, K., de Jong, A. F., Roe, H. M., Selby, K., and Black, S.: Reconstructing the accumulation history of a saltmarsh sediment core: Which age-depth model is best?, Quat. Geochronol., 39, 35–67, 2017.
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate...