Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-177-2022
https://doi.org/10.5194/gchron-4-177-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

How many grains are needed for quantifying catchment erosion from tracer thermochronology?

Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers

Related authors

Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019,https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary

Cited articles

Andersen, T.: Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation, Chem. Geol., 216, 249–270, https://doi.org/10.1016/j.chemgeo.2004.11.013, 2005. 
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114, F04023, https://doi.org/10.1029/2009JF001328, 2009. 
Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and Naylor, M.: Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California), Earth Surf. Dynam., 3, 201–222, https://doi.org/10.5194/esurf-3-201-2015, 2015. 
Avdeev, B., Niemi, N. A., and Clark, M. K.: Doing more with less: Bayesian estimation of erosion models with detrital thermochronometric data, Earth Planet. Sc. Lett., 305, 385–395, https://doi.org/10.1016/j.epsl.2011.03.020, 2011. 
Brewer, I. D., Burbank, D. W., and Hodges, K. V.: Modelling detrital cooling-age populations: Insights from two Himalayan catchments, Basin Res., 15, 305–320, https://doi.org/10.1046/j.1365-2117.2003.00211.x, 2003. 
Download
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.