Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-665-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-665-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
U and Th content in magnetite and Al spinel obtained by wet chemistry and laser ablation methods: implication for (U–Th) ∕ He thermochronometer
Marianna Corre
CORRESPONDING AUTHOR
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD,
Univ. Gustave Eiffel, 38000 Grenoble, France
Arnaud Agranier
UBO, IUEM, Place Nicolas Copernic, 29820 Plouzané, France
Martine Lanson
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD,
Univ. Gustave Eiffel, 38000 Grenoble, France
Cécile Gautheron
Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD,
Univ. Gustave Eiffel, 38000 Grenoble, France
Fabrice Brunet
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD,
Univ. Gustave Eiffel, 38000 Grenoble, France
Stéphane Schwartz
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD,
Univ. Gustave Eiffel, 38000 Grenoble, France
Related authors
No articles found.
Louise Boschetti, Malou Pelletier, Fréderic Mouthereau, Stephane Schwartz, Yann Rolland, Guilhem Hoareau, Thierry Dumont, Dorian Bienveignant, and Abdeltif Lahfid
EGUsphere, https://doi.org/10.5194/egusphere-2025-3332, https://doi.org/10.5194/egusphere-2025-3332, 2025
Short summary
Short summary
We investigated the Vocontian Basin in SE of France to understand its tectonic evolution and its preservation of deformation as it is at the intersection between Alps and Pyrenees. By combining calcite U–Pb dating, burial modeling and Raman thermometry, we identified three major deformation phases from the Late Cretaceous to the Miocene. Our results highlight how brittle deformation, fluid circulation, and thermal gradients record the interplay of multiple mountain-building and rifting events.
Catherine Leyx, Peter Schmid-Beurmann, Fabrice Brunet, Christian Chopin, and Christian Lathe
Eur. J. Mineral., 36, 417–431, https://doi.org/10.5194/ejm-36-417-2024, https://doi.org/10.5194/ejm-36-417-2024, 2024
Short summary
Short summary
This paper presents the results of an exploratory study on the pressure–volume–temperature behaviour of the main Mg-phosphates of geological interest, especially in high-pressure metamorphic rocks. The incentive for it was the growing body of experimental phase-equilibrium data acquired at high pressure in the MgO–(Al2O3)–P2O5–H2O systems, the thermodynamic evaluation of which has been begging for such volumetric data.
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Cited articles
Bassal, F., Roques J., Corre, M., Brunet, F., Ketcham, R., Schwartz, S.,
Tassan-Got, L., and Gautheron, C.: Role of defects and radiation damage on
He diffusion in magnetite: implication for (U–Th) He thermochronology,
Minerals, 12, 590, https://doi.org/10.3390/min12050590, 2022.
Blackburn, T. J., Stockli, D. F., and Walker, J. D.: Magnetite (U–Th) He
dating and its application to the geochronology of intermediate to mafic
volcanic rocks, Earth Planet. Sci. Lett., 259, 360–371,
https://doi.org/10.1016/j.epsl.2007.04.044, 2007.
Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M., and Whitehouse, M. J.:
Characterisation of early Archaean chemical sediments by trace element
signatures, Earth Planet. Sci. Lett., 222, 43–60,
https://doi.org/10.1016/j.epsl.2004.02.016, 2004.
Bolhar, R., Hofmann, A., Siahi, M., Feng, Y., and Delvigne, C.: A trace
element and Pb isotopic investigation into the provenance and deposition of
stromatolitic carbonates, ironstones and associated shales of the ∼3.0 Ga Pongola Supergroup, Kaapvaal Craton, Geochim. Cosmochim. Acta, 158,
57–78, https://doi.org/10.1016/j.gca.2015.02.026, 2015.
Colás, V., González-Jiménez, J. M., Griffin, W. L., Fanlo, I.,
Gervilla, F., O'Reilly, S., Pearson, N. J., Kerestedjian, T., and Proenza, J.
A.: Fingerprints of metamorphism in chromite: New insights from minor and
trace elements, Chem. Geol., 389, 137–152,
https://doi.org/10.1016/j.chemgeo.2014.10.001, 2014.
Cooperdock, E. H. G. and Ault, A. K.: Iron Oxide (U–Th) He
Thermochronology: New Perspectives on Faults, Fluids, and Heat, Elements,
16, 319–324, https://doi.org/10.2138/gselements.16.5.319, 2020.
Cooperdock, E. H. G. and
Stockli, D. F.: Unraveling alteration histories in serpentinites and
associated ultramafic rocks with magnetite (U–Th) He geochronology, Geology,
44, 967–970, https://doi.org/10.1130/G38587.1, 2016.
Cooperdock, E. H. G. and Stockli, D. F.: Dating exhumed peridotite with
spinel (U–Th) He chronometry, Earth Planet. Sci. Lett., 489,
219–227, https://doi.org/10.1016/j.epsl.2018.02.041, 2018.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the
effects of 2-D versus 3-D grain measurements on apatite (U–Th) He age data
and reproducibility, Geochronology, 1, 17–41,
https://doi.org/10.5194/gchron-1-17-2019, 2019.
Cooperdock, E. H. G., Stockli, D. F., Kelemen, P. B., and Obeso, J. C.:
Timing of Magnetite Growth Associated With Peridotite-Hosted Carbonate Veins
in the SE Samail Ophiolite, Wadi Fins, Oman, J. Geophys. Res.-Solid Ea.,
125, e2019JB018632, https://doi.org/10.1029/2019JB018632, 2020.
Costa, M. M., Jensen, N. K., Bouvier, L. C., Connelly, J. N., Mikouchi, T.,
Horstwood, M. S. A., Suuronen, J. P., Moynier, F., Deng, Z., Agranier, A.,
Martin, L. A. J., Johnson, T. E., Nemchinh, A. A., and Bizzarro, M.:.The
internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon
record, P. Natl. Acad. Sci. USA, 117, 30973–30979,
https://doi.org/10.1073/pnas.2016326117, 2020.
Dare, S. A. S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E., and
Potvin-Doucet, C.: Trace elements in magnetite as petrogenetic indicators,
Miner. Deposita, 49, 785–796, https://doi.org/10.1007/s00126-014-0529-0,
2014
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., and Ayrault, S.: Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry, Chem. Geol., 272, 1–11, https://doi.org/10.1016/j.chemgeo.2010.01.007, 2010.
Dulski, P.: Reference Materials for Geochemical Studies: New Analytical Data
by ICP-MS and Critical Discussion of Reference Values, Geostand.
Geoanalytical Res., 25, 87–125,
https://doi.org/10.1111/j.1751-908X.2001.tb00790.x, 2001.
Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., and Hu,
S.: Determination of Forty Two Major and Trace Elements in USGS and NIST SRM
Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry,
Geostandard. Newslett., 26, 181–196,
https://doi.org/10.1111/j.1751-908X.2002.tb00886.x, 2002.
Garbe-Schönberg, D. and Müller, S.: Nano-particulate pressed powder
tablets for LA-ICP-MS, J. Anal. Atom. Spectrom.,
29, 990–1000, https://doi.org/10.1039/C4JA00007B, 2014.
Gautheron, C. and Zeitler, P. K.: Noble Gases Deliver Cool Dates from Hot
Rocks, Elements, 16, 303–309, https://doi.org/10.2138/gselements.16.5.303,
2020.
Gautheron, C., Pinna-Jamme, R., Derycke, A., Ahadi, F., Sanchez, C., Haurine, F., Monvoisin, G., Barbosa, D., Delpech, G., Maltese, J., Sarda, P., and Tassan-Got, L.: Technical note: Analytical protocols and performance for apatite and zircon (U–Th) He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020, Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, 2021.
Gautheron, C., Hueck, M., Ternois, S., Heller, B., Schwartz, S., Sarda, P.
and Tassan-Got, L.: Investigating the Shallow to Mid-Depth (>100–300 ∘C) Continental Crust Evolution with (U–Th) He
Thermochronology: A Review, Minerals 12, 563,
https://doi.org/10.3390/min12050563, 2022.
Govindaraju, K.: UPDATE (1984–1995) On Two Git – Iwg Geochemical Reference
Samples: Albite From Italy, Al-I and iron formation sample from Greenland,
IF-G, Geostand. Geoanalytical Res., 19, 55–96,
https://doi.org/10.1111/j.1751-908X.1995.tb00152.x, 1995.
Guilmette, C., Hébert, R., Wang, C., and Villeneuve, M.: Geochemistry
and geochronology of the metamorphic sole underlying the Xigaze Ophiolite,
Yarlung Zangbo Suture Zone, South Tibet, Lithos, 112, 149–162,
https://doi.org/10.1016/j.lithos.2009.05.027, 2009.
Hofmann, F., Cooperdock, E. H. G., West, A. J., Hildebrandt, D., Strößner, K., and Farley, K. A.: Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite, Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, 2021.
Hunter, K. A., Hawke, D. J., and Lee, K. C.: Equilibrium adsorption of
thorium by metal oxides in marine electrolytes, Geochim. Cosmochim. Acta,
52, 627–636, https://doi.org/10.1016/0016-7037(88)90324-9, 1988.
Inglis, E. C., Creech, J. B., Deng, Z., and Moynier, F.: High-precision
zirconium stable isotope measurements of geological reference materials as
measured by double-spike MC-ICPMS, Chem. Geol., 493, 544–552,
https://doi.org/10.1016/j.chemgeo.2018.07.007, 2018.
Ilyinichna, O. O., Michailovich, L. S., Sergeevich, D. A., and Gennadievna, E. K.: An investigation of trace elements' behavior during chemical preparation of ultramafic matrix rock samples using bomb digestion for analysis by ICP-MS, J. Anal. Atom. Spectrom., 35, 2627, https://doi.org/10.1039/D0JA00255K, 2020.
Kamber, B. S., Bolhar, R., and Webb, G. E.: Geochemistry of late Archaean
stromatolites from Zimbabwe: evidence for microbial life in restricted
epicontinental seas, Precambrian Res., 132, 379–399,
https://doi.org/10.1016/j.precamres.2004.03.006, 2004.
Koch, J., Feldmann, I., Jakubowski, N., and Niemax, K.: Elemental
composition of laser ablation aerosol particles deposited in the transport
tube to an ICP, Spectrochim. Acta B, 57,
975–985, https://doi.org/10.1016/S0584-8547(02)00021-6, 2002.
Kubik, E., Siebert, J., Blanchard, I., Agranier, A., Mahan, B., and Moynier,
F.: Earth's volatile accretion as told by Cd, Bi, Sb and Tl core–mantle
distribution, Geochim. Cosmochim. Acta, 306, 263–280,
https://doi.org/10.1016/j.gca.2021.02.017, 2021.
Locmelis, M., Pearson, N. J., Barnes, S. J., and Fiorentini, M. L.: Ruthenium in
komatiitic chromite, Geochimi. Cosmochim. Acta, 75, 3645–3661,
https://doi.org/10.1016/j.gca.2011.03.041, 2011.
Li, Z.-X. A. and Lee, C. T. A.: Geochemical investigation of serpentinized
oceanic lithospheric mantle in the Feather River Ophiolite, California:
Implications for the recycling rate of water by subduction, Chem. Geol.,
235, 161–185, https://doi.org/10.1016/j.chemgeo.2006.06.011, 2006.
Martínez-Mera, I., Espinosa-Pesqueira, M. E., Pérez-Hernández,
R., and Arenas-Alatorre, J.: Synthesis of magnetite (Fe3O4)
nanoparticles without surfactants at room temperature, Mater. Lett.,
61, 4447–4451, https://doi.org/10.1016/j.matlet.2007.02.018, 2007.
Missana, T., Maffiotte, C., and Garcıìa-Gutiérrez, M.: Surface
reactions kinetics between nanocrystalline magnetite and uranyl, J. Colloid
Interface Sci., 261, 154–160,
https://doi.org/10.1016/S0021-9797(02)00227-8, 2003.
Parkhurst, D. L. and Appelo, C. A. J.: Description of Input and Examples for
PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction,
One-Dimensional Transport, and Inverse Geochemical Calculations, US
Geological Survey, book 6, chap. A43, 497 pp., https://pubs.usgs.gov/tm/06/a43/ (last access: 10 March 2021), 2013.
Parks, J., Lin, S., Davis, D. W., Yang, X.-M., Creaser, R. A., and Corkery,
M. T.: Meso- and Neoarchean evolution of the Island Lake greenstone belt and
the northwestern Superior Province: Evidence from lithogeochemistry, Nd
isotope data, and U–Pb zircon geochronology, Precambrian Res., 246,
160–179, https://doi.org/10.1016/j.precamres.2014.02.016, 2014.
Potin, S., Beck, P., Bonal, L., Schmitt, B., Garenne, A., Moynier, F.,
Agranier, A., Schmitt-Kopplin P., Malik, A. K., and Quirico, E.: Mineralogy,
chemistry, and composition of organic compounds in the fresh carbonaceous
chondrite Mukundpura: CM1 or CM2?, Meteorit. Planet. Sci., 55, 1681–1696,
https://doi.org/10.1111/maps.13540, 2020.
Schwartz, S., Gautheron C., Ketcham R. A., Brunet F., Corre M., Agranier A.,
Pinna-Jamme R., Haurine F., Guéguen B., Monvoin G., and Riel N.:
Unraveling the exhumation history of high-pressure ophiolites using
magnetite (U–Th–Sm) He thermochronometry, Earth Planet. Sci. Lett., 543,
116359, https://doi.org/10.1016/j.epsl.2020.116359, 2020.
Steenstra, E. S., Berndt, J., Klemme, S., and van Westrenen, W.: LA-ICP-MS
analyses of Fe-rich alloys: quantification of matrix effects for 193 nm
excimer laser systems, J. Anal. At. Spectrom., 34, 222–231,
https://doi.org/10.1039/C8JA00291F, 2019.
Stopa, L. C. B. and Yamaura, M.: Uranium removal by chitosan impregnated with
magnetite nanoparticles: adsorption and desorption, Int. J.
Nuclear Energy Science and Technology, 5, 283, https://doi.org/10.1504/IJNEST.2010.035538, 2010.
Tricart, P. and Schwartz, S.: A north-south section across the Queyras
Schistes lustrés (Piedmont zone, Western Alps): Syn-collision refolding
of a subduction wedge, Eclogae Geol. Helv., 99, 429–442,
https://doi.org/10.1007/s00015-006-1197-6, 2006.
Van Kooten, E. M. M. E., Moynier, F., and Agranier, A.: A unifying model for
the accretion of chondrules and matrix, P. Natl. Acad. Sci. USA, 116, 18860–18866,
https://doi.org/10.1073/pnas.1907592116, 2019.
Viehmann, S., Bau, M., Bühn, B., Dantas, E. L., Andrade, F. R. D., and
Walde, D. H. G.: Geochemical characterisation of Neoproterozoic marine
habitats: Evidence from trace elements and Nd isotopes in the Urucum iron
and manganese formations, Brazil, Precambrian Res., 282, 74–96,
https://doi.org/10.1016/j.precamres.2016.07.006, 2016.
Yamaura, M., Wada, L. Y., and Ribeiro, F. C.: Spectrophotometric
determination of uranium (VI) with arsenazo III in a nitric medium;
Determinacao espectrofotometrica de uranio (VI) com arsenazo III, em meio
nitrico, Associacao Brasileira de Energia Nuclear, Rio de Janeiro, RJ, Brazil, 5 pp., 2002.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3138 KB) - Full-text XML
- Corrigendum
-
Supplement
(583 KB) - BibTeX
- EndNote
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
This study is focused on the accurate measurement of U and Th by wet chemistry and laser...