Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-323-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-323-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
sandbox – creating and analysing synthetic sediment sections with R
Section 4.6 Geomorphology, GFZ German Research Centre for Geosciences, Potsdam, Germany
Faculty of Geosciences and Geography, Georg-August-Universität, Göttingen, Germany
Sebastian Kreutzer
Geography & Earth Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
Archéosciences Bordeaux, UMR 6034, CNRS – Université Bordeaux Montaigne, 33607 Pessac CEDEX, France
Margret C. Fuchs
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz-Institut Freiberg for Resource Technology, Freiberg, Germany
Sascha Meszner
JENA-GEOS-Ingenieurbüro GmbH, Jena, Germany
Related authors
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Sebastian Kreutzer, Loïc Martin, Didier Miallier, and Norbert Mercier
Geochronology, 7, 229–246, https://doi.org/10.5194/gchron-7-229-2025, https://doi.org/10.5194/gchron-7-229-2025, 2025
Short summary
Short summary
Accurate readings on the environmental gamma dose rate are important. Portable gamma-ray detectors, such as those that are NaI- or LaBr3-based, are easy to handle and affordable. Limited information on alternatives, like CZT (cadmium zinc telluride) detectors, is available. We tested CZT detectors and found them suitable for in-field deployment. We used simulations and field tests to evaluate the optimal energy threshold for direct dose rate readings, making the CZT system a reliable alternative.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology, 6, 665–682, https://doi.org/10.5194/gchron-6-665-2024, https://doi.org/10.5194/gchron-6-665-2024, 2024
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Sebastian Kreutzer, Steve Grehl, Michael Höhne, Oliver Simmank, Kay Dornich, Grzegorz Adamiec, Christoph Burow, Helen M. Roberts, and Geoff A. T. Duller
Geochronology, 5, 271–284, https://doi.org/10.5194/gchron-5-271-2023, https://doi.org/10.5194/gchron-5-271-2023, 2023
Short summary
Short summary
The concept of open data has become the modern science meme. Funding bodies and publishers support open data. However, the open data mandate frequently encounters technical obstacles, such as a lack of a suitable data format for data sharing and long-term data preservation. Such issues are often community-specific and demand community-tailored solutions. We propose a new human-readable data format for data exchange and long-term preservation of luminescence data called XLUM.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Cited articles
Arnold, L. and Roberts, R.: Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures, Quat. Geochronol., 4, 204–230, https://doi.org/10.1016/j.quageo.2008.12.001, 2009. a
Bertran, P., Liard, M., Sitzia, L., and Tissoux, H.: A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France,
J. Quaternary Sci., 31, 844–856, https://doi.org/10.1002/jqs.2909, 2016. a
Blaauw, M. and Christen, J.: Flexible paleoclimate age-depth models using an
autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/ba/1339616472, 2011. a
Blume, H.-P., Schffer, F., Brümmer, G., Schachtschabel, P., Horn, R.,
Kandler, E., Kögel-knabner, I., Ketzschmar, R., Stahr, K., Wilke, B.-M.,
and Welp, G.: Lehrbuch der Bodenkunde, Springer, https://doi.org/10.1007/978-3-8274-2251-4, 2010. a, b
Dietze, E., and Dietze, M.: Grain-size distribution unmixing using the R package EMMAgeo, E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, 2019. a, b, c
Dietze, M. and Dietze, E.: EMMAgeo: End-Member Modelling of Grain-Size Data, R package version 0.9.6, GFZ Data Services [code], https://doi.org/10.5880/GFZ.4.6.2019.002, 2016. a
Dietze, M. and Kreutzer, S.: sandbox – an R tool for creating and analysing synthetic sediment sections, V. 0.2.0, GFZ Data Services [code], https://doi.org/10.5880/GFZ.4.6.2021.005, 2021. a, b
Friedrich, J., Kreutzer, S., and Schmidt, C.: Solving ordinary differential
equations to understand luminescence: 'RLumModel' an advanced research
tool for simulating luminescence in quartz using R, Quat. Geochronol., 35, 88–100, https://doi.org/10.1016/j.quageo.2016.05.004, 2016. a
Fuchs, M. and Lomax, J.: Stone pavements in arid environments: Reasons for De
overdispersion and grain-size dependent OSL ages, Quat. Geochronol.,
49, 191–198, https://doi.org/10.1016/j.quageo.2018.05.013, 2019. a
Fuchs, M. and Owen, L.: Luminescence dating of glacial and associated
sediments: review, recommendations and future directions, Boreas, 37,
636–659, https://doi.org/10.1111/j.1502-3885.2008.00052.x, 2008. a
Fuchs, M., Fischer, M., and Reverman, R.: Colluvial and alluvial sediment
archives temporally resolved by OSL dating: Implications for reconstructing
soil erosion, Quat. Geochronol., 5, 269–273,
https://doi.org/10.1016/j.quageo.2009.01.006, 2010. a
Galbraith, R. F., Roberts, R. G., and Yoshida, H.: Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment,
Radiat. Meas., 39, 289–307, 2005. a
Hales, T. C.: The sphere packing problem, J. Comput. Appl. Math., 44, 41–76, https://doi.org/10.1016/0377-0427(92)90052-y, 1992. a
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017. a
Kreutzer, S., Fuchs, M., Meszner, S., and Faust, D.: OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of
different grain sizes, Quat. Geochronol., 10, 102–109,
https://doi.org/10.1016/j.quageo.2012.01.004, 2012a. a
Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M., and Fuchs,
M.: Introducing an R package for luminescence dating analysis, Ancient
TL, 30, 1–8, 2012b. a
Krumbein, E. A. W. C.: The sediments of Barataria Bay, J. Sediment. Petrol., 7, 1–15, https://doi.org/10.1306/D4268F8B-2B26-11D7-8648000102C1865D, 1937. a
Lowry, J., Coulthard, T., and Hancock, G.: Assessing the long-term geomorphic stability of a rehabilitated landform using the CAESAR-Lisflood landscape evolution model, in: Proceedings of the Eighth International Seminar on Mine Closure, Cornwall, 2013, edited by: Tibbett, M., Fourie, A., and Digby, C., Australian Centre for Geomechanics, 611–624, https://doi.org/10.36487/ACG_rep/1352_51_Lowry, 2013. a, b
Meszner, S.: Loess from Saxony, PhD thesis, TU Dresden, Dresden, Germany, 2015. a
Meszner, S., Fuchs, M., and Faust, D.: Loess-Palaeosol-Sequences from the loess area of Saxony (Germany), E&G Quaternary Sci. J., 60, 4, https://doi.org/10.3285/eg.60.1.03, 2011. a, b
Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene
landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction
using loess-paleosol sequences, Quaternary Int., 296, 95–107,
https://doi.org/10.1016/j.quaint.2012.12.040, 2013. a
Meszner, S., Dietze, M., and Faust, D.: Grain-size data from the loess profiles Ostrau and Gleina in Saxony (Germany) (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4446863, 2021. a
R Development Core Team: R: A Language and Environment for Statistical
Computing, Vienna, Austria, http://CRAN.R-project.org (last access: 19 May 2022), 2021. a
Schoorl, J., Sonneveld, M., and Veldkamp, A.: Three-dimensional landscape process modelling: The effect of DEM resolution, Earth Surf. Proc. Land., 25, 1025–1034, https://doi.org/10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z, 2000. a
Sheldon, N. and Retallack, G.: Equation for compaction of paleosols due to burial, Geology, 29, 247–250, https://doi.org/10.1130/0091-7613(2001)029<0247:EFCOPD>2.0.CO;2, 2001. a, b, c
Tucker, G., Lancaster, S., Gasparini, N., and Bras, R.: The Channel-Hillslope
Integrated Landscape Development Model (CHILD), Springer US,
Boston, MA, 349–388, https://doi.org/10.1007/978-1-4615-0575-4_12, 2001. a
Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful
proxy for process identification, Earth Sci. Rev., 121, 18–30,
https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.
a, b
Weltje, G. J.: End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem, Math. Geol., 29, 503–549, 1997. a
Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and
applications, Water Resour. Res., 27, 1685–1696,
https://doi.org/10.1029/91WR00936, 1991. a
Zech, M., Kreutzer, S., Zech, R., Goslar, T., Meszner, S., McIntyre, C.,
Häggi, C., Eglinton, T., Faust, D., and Fuchs, M.: Comparative 14-C and OSL
dating of loess-paleosol sequences to evaluate post-depositional
contamination of n-alkane biomarkers, Quaternary Res., 87, 180–189,
https://doi.org/10.1017/qua.2016.7, 2017. a, b
Zeeden, C., Dietze, M., and Kreutzer, S.: Discriminating luminescence age
uncertainty composition for a robust Bayesian modelling, Quat.
Geochronol., 43, 30–39, https://doi.org/10.1016/j.quageo.2017.10.001, 2018. a
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
The R package sandbox is a collection of functions that allow the creation, sampling and...