Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-501-2022
https://doi.org/10.5194/gchron-4-501-2022
Short communication/technical note
 | 
21 Jul 2022
Short communication/technical note |  | 21 Jul 2022

Technical note: Rapid phase identification of apatite and zircon grains for geochronology using X-ray micro-computed tomography

Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian

Related authors

Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021,https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) ∕ He age data and reproducibility
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019,https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023,https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models
Michael C. Sitar and Ryan J. Leary
Geochronology, 5, 109–126, https://doi.org/10.5194/gchron-5-109-2023,https://doi.org/10.5194/gchron-5-109-2023, 2023
Short summary
Calculation of uncertainty in the (U–Th) ∕ He system
Peter E. Martin, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 91–107, https://doi.org/10.5194/gchron-5-91-2023,https://doi.org/10.5194/gchron-5-91-2023, 2023
Short summary
Bayesian age–depth modelling applied to varve and radiometric dating to optimize the transfer of an existing high-resolution chronology to a new composite sediment profile from Holzmaar (West Eifel Volcanic Field, Germany)
Stella Birlo, Wojciech Tylmann, and Bernd Zolitschka
Geochronology, 5, 65–90, https://doi.org/10.5194/gchron-5-65-2023,https://doi.org/10.5194/gchron-5-65-2023, 2023
Short summary

Cited articles

Alves, H., Lima, I., and Lopes, R. T.: Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images, Appl. Radiat. Isot., 89, 6–12, https://doi.org/10.1016/j.apradiso.2014.01.018, 2014. 
Buijs, W., Van Der Gen, A., Mohn, G. R., and Breimer, D. D.: The direct mutagenic activity of α, ω-dihalogenoalkanes in Salmonella typhimurium: Strong correlation between chemical properties and mutagenic activity, Mutat. Res. Lett., 141, 11–14, https://doi.org/10.1016/0165-7992(84)90029-0, 1984. 
Bowring, S. A. and Schmitz, M. D.: High-precision U-Pb zircon geochronology and the stratigraphic record, Rev. Mineral. Geochem., 53, 305–326, https://doi.org/10.2113/0530305, 2003. 
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th)/He age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019. 
Dragonfly 2021.1: Object Research Systems (ORS) Inc, Montreal, Canada [computer software], 2021, http://www.theobjects.com/dragonfly, last access: 25 August 2021. 
Download
Short summary
Apatite and zircon are the most widely used minerals for dating rocks, but they can be difficult to identify in some crushed rock samples. Incorrect mineral identification results in wasted analytical resources and inaccurate data. We show how X-ray computed tomography can be used to efficiently and accurately distinguish apatite from zircon based on density variations, and provide non-destructive 3D grain-specific size, shape, and inclusion information for improved data quality.