Articles | Volume 6, issue 4
https://doi.org/10.5194/gchron-6-697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach
CORRESPONDING AUTHOR
Department of Geosciences, University of Tübingen, Tübingen, 72076, Germany
Todd A. Ehlers
School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
Department of Geosciences, University of Tübingen, Tübingen, 72076, Germany
Related authors
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Lorenz Michel, Christoph Glotzbach, Sarah Falkowski, Byron A. Adams, and Todd A. Ehlers
Earth Surf. Dynam., 7, 275–299, https://doi.org/10.5194/esurf-7-275-2019, https://doi.org/10.5194/esurf-7-275-2019, 2019
Short summary
Short summary
Mountain-building processes are often investigated by assuming a steady state, meaning the balance between opposing forces, like mass influx and mass outflux. This work shows that the Olympic Mountains are in flux steady state on long timescales (i.e., 14 Myr), but the flux steady state could be disturbed on shorter timescales, especially by the Plio–Pleistocene glaciation. The contribution highlights the temporally nonsteady evolution of mountain ranges.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Hemanti Sharma and Todd A. Ehlers
Earth Surf. Dynam., 11, 1161–1181, https://doi.org/10.5194/esurf-11-1161-2023, https://doi.org/10.5194/esurf-11-1161-2023, 2023
Short summary
Short summary
Seasonality in precipitation (P) and vegetation (V) influences catchment erosion (E), although which factor plays the dominant role is unclear. In this study, we performed a sensitivity analysis of E to P–V seasonality through numerical modeling. Our results suggest that P variations strongly influence seasonal variations in E, while the effect of seasonal V variations is secondary but significant. This is more pronounced in moderate and least pronounced in extreme environmental settings.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Mirjam Schaller and Todd A. Ehlers
Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, https://doi.org/10.5194/esurf-10-131-2022, 2022
Short summary
Short summary
Soil production, chemical weathering, and physical erosion rates from the large climate and vegetation gradient of the Chilean Coastal Cordillera (26 to 38° S) are investigated. Rates are generally lowest in the sparsely vegetated and arid north, increase southward toward the Mediterranean climate, and then decrease slightly, or possible stay the same, further south in the temperate humid zone. This trend is compared with global data from similar soil-mantled hillslopes in granitic lithologies.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Short summary
The cooling climate of the last few million years leading into the ice ages has been linked to increasing erosion rates by glaciers. One of the ways to measure this is through mineral cooling ages. In this paper, we investigate potential bias in these data and the methods used to analyse them. We find that the data are not themselves biased but that appropriate methods must be used. Past studies have used appropriate methods and are sound in methodology.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Solmaz Mohadjer, Sebastian G. Mutz, Matthew Kemp, Sophie J. Gill, Anatoly Ischuk, and Todd A. Ehlers
Geosci. Commun., 4, 281–295, https://doi.org/10.5194/gc-4-281-2021, https://doi.org/10.5194/gc-4-281-2021, 2021
Short summary
Short summary
Lack of access to science-based natural hazards information impedes the effectiveness of school-based disaster risk reduction education. To address this challenge, we created and classroom tested a series of earthquake education videos that were co-taught by school teachers and Earth scientists in the UK and Tajikistan. Comparison of the results reveals significant differences between students' views on the Earth's interior and why and where earthquakes occur.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Lorenz Michel, Christoph Glotzbach, Sarah Falkowski, Byron A. Adams, and Todd A. Ehlers
Earth Surf. Dynam., 7, 275–299, https://doi.org/10.5194/esurf-7-275-2019, https://doi.org/10.5194/esurf-7-275-2019, 2019
Short summary
Short summary
Mountain-building processes are often investigated by assuming a steady state, meaning the balance between opposing forces, like mass influx and mass outflux. This work shows that the Olympic Mountains are in flux steady state on long timescales (i.e., 14 Myr), but the flux steady state could be disturbed on shorter timescales, especially by the Plio–Pleistocene glaciation. The contribution highlights the temporally nonsteady evolution of mountain ranges.
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018, https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary
Short summary
In this modeling study, we investigate rock uplift at plate corners (syntaxes). These are characterized by a unique bent geometry at subduction zones and exhibit some of the world's highest rock uplift rates. We find that the style of deformation changes above the plate's bent section and that active subduction is necessary to generate an isolated region of rapid uplift. Strong erosion there localizes uplift on even smaller scales, suggesting both tectonic and surface processes are important.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Byron A. Adams and Todd A. Ehlers
Earth Surf. Dynam., 6, 595–610, https://doi.org/10.5194/esurf-6-595-2018, https://doi.org/10.5194/esurf-6-595-2018, 2018
Short summary
Short summary
Where alpine glaciers were active in the past, they have created scenic landscapes that are likely in the process of morphing back into a form that it more stable with today's climate regime and tectonic forces. By looking at older erosion rates from before the time of large alpine glaciers and erosion rates since deglaciation in the Olympic Mountains (USA), we find that the topography and erosion rates have not drastically changed despite the impressive glacial valleys that have been carved.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Heiko Paeth, Christian Steger, Jingmin Li, Sebastian G. Mutz, and Todd A. Ehlers
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-111, https://doi.org/10.5194/cp-2017-111, 2017
Manuscript not accepted for further review
Short summary
Short summary
We use a high-resolution regional climate model to investigate various episodes of distinct climate states over the Tibetan Plateau region during the Cenozoic rise of the Plateau and Quaternary glacial/interglacial cycles. The simulated changes are in good agreement with available paleo-climatic reconstructions from proxy data. It is shown that in some regions of the Tibetan Plateau the climate anomalies during the Quaternary have been as strong as the changes occurring during the uplift period.
Michael Dietze, Solmaz Mohadjer, Jens M. Turowski, Todd A. Ehlers, and Niels Hovius
Earth Surf. Dynam., 5, 653–668, https://doi.org/10.5194/esurf-5-653-2017, https://doi.org/10.5194/esurf-5-653-2017, 2017
Short summary
Short summary
We use a seismometer network to detect and locate rockfalls, a key process shaping steep mountain landscapes. When tested against laser scan surveys, all seismically detected events could be located with an average deviation of 81 m. Seismic monitoring provides insight to the dynamics of individual rockfalls, which can be as small as 0.0053 m3. Thus, seismic methods provide unprecedented temporal, spatial and kinematic details about this important process.
Solmaz Mohadjer, Todd Alan Ehlers, Rebecca Bendick, Konstanze Stübner, and Timo Strube
Nat. Hazards Earth Syst. Sci., 16, 529–542, https://doi.org/10.5194/nhess-16-529-2016, https://doi.org/10.5194/nhess-16-529-2016, 2016
Short summary
Short summary
The Central Asia Fault Database is the first publicly accessible digital repository for active faults in central Asia and the surrounding regions. It includes an interactive map and a search tool that allow users to query and display critical fault information such as slip rates and earthquake history. The map displays over 1196 fault traces and 34 000 earthquake locations. The database contains attributes for 123 faults mentioned in the literature.
R. M. Headley and T. A. Ehlers
Earth Surf. Dynam., 3, 153–170, https://doi.org/10.5194/esurf-3-153-2015, https://doi.org/10.5194/esurf-3-153-2015, 2015
Short summary
Short summary
Within a landscape evolution model operating over geologic timescales, this work evaluates how different assumptions and levels of complexity for modeling glacier flow impact the pattern and amount of glacial erosion. Compared to those in colder climates, modeled glaciers in warmer and wetter climates are more sensitive to the choice of glacier flow model. Differences between landscapes evolved with different glacier flow models are intensified over multiple cycles.
Related subject area
Geochronological data analysis/statistics/modelling
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
An optimization tool for identifying multiple-diffusion domain model parameters
A statistical analysis of zircon age distributions in volcanic, porphyry and plutonic rocks
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
The daughter–parent plot: a tool for analyzing thermochronological data
Errorchrons and anchored isochrons in IsoplotR
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
Navigating the complexity of detrital rutile provenance: methodological insights from the Neotethys Orogen in Anatolia
Solving crustal heat transfer for thermochronology using physics-informed neural networks
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Modeling apparent Pb loss in zircon U–Pb geochronology
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models
Calculation of uncertainty in the (U–Th) ∕ He system
Bayesian age–depth modelling applied to varve and radiometric dating to optimize the transfer of an existing high-resolution chronology to a new composite sediment profile from Holzmaar (West Eifel Volcanic Field, Germany)
Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya
U and Th content in magnetite and Al spinel obtained by wet chemistry and laser ablation methods: implication for (U–Th) ∕ He thermochronometer
In situ LA-ICPMS U–Pb dating of sulfates: applicability of carbonate reference materials as matrix-matched standards
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Technical note: Rapid phase identification of apatite and zircon grains for geochronology using X-ray micro-computed tomography
Simulating sedimentary burial cycles – Part 2: Elemental-based multikinetic apatite fission-track interpretation and modelling techniques illustrated using examples from northern Yukon
sandbox – creating and analysing synthetic sediment sections with R
Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble
How many grains are needed for quantifying catchment erosion from tracer thermochronology?
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Technical note: Analytical protocols and performance for apatite and zircon (U–Th) ∕ He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
Simulating sedimentary burial cycles – Part 1: Investigating the role of apatite fission track annealing kinetics using synthetic data
The closure temperature(s) of zircon Raman dating
On the treatment of discordant detrital zircon U–Pb data
An evaluation of Deccan Traps eruption rates using geochronologic data
geoChronR – an R package to model, analyze, and visualize age-uncertain data
Development of a multi-method chronology spanning the Last Glacial Interval from Orakei maar lake, Auckland, New Zealand
Robust isochron calculation
Resolving the timescales of magmatic and hydrothermal processes associated with porphyry deposit formation using zircon U–Pb petrochronology
Seasonal deposition processes and chronology of a varved Holocene lake sediment record from Chatyr Kol lake (Kyrgyz Republic)
Unifying the U–Pb and Th–Pb methods: joint isochron regression and common Pb correction
Exploring the advantages and limitations of in situ U–Pb carbonate geochronology using speleothems
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024, https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary
Short summary
Decay of U to Pb in baddeleyite is used for dating mafic rocks, but some daughter Pb atoms can be ejected out of the crystal, resulting in ages that seem too young. Atom probe tomography was used to map U and Pb atoms in 3D within baddeleyite crystals and estimate the average distance that Pb atoms are displaced by recoil. This allows us to test the relationship between crystal size and apparent age. There is also evidence for clustering of U atoms, inviting more work on how this may occur.
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024, https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
Short summary
Dating the roots of plate boundaries is essential for understanding geologic processes, but geochemical limitations, particularly in young mafic rocks, make this challenging. Advancements in mass spectrometry now enable high-resolution analysis of micro-domains. We assess these limitations by dating rocks from Syros. Multi-phase mineral analysis improves age uncertainty 6-fold. We emphasize the importance of the local geologic context and propose strategies to mitigate uncertainties.
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024, https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Short summary
The multiple-diffusion domain (MDD) model quantifies the temperature dependence of noble gas diffusivity in minerals. However, current methods for tuning MDD parameters can yield biased results, leading to underestimates of sample temperatures through geologic time. Our "MDD Tool Kit" software optimizes all MDD parameters simultaneously, overcoming these biases. We then apply this software to a previously published 40Ar/39Ar dataset (Wong, 2023) to showcase its efficacy.
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-25, https://doi.org/10.5194/gchron-2024-25, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We performed a statistical analysis of high precision U-Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused by truncation of zircon crystallisation by magma evacuation, rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024, https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Short summary
We present a new data analysis workflow for thermochronological data based on plots of radiogenic daughter vs. radioactive parent concentration. The daughter–parent relationship helps to identify the sources of age variation. Our workflow classifies the daughter–parent relationship and provides further suggestions, e.g., if a dataset can be described by a sample age and which type of sample age to report. We also introduce Incaplot, which is software for creating daughter–parent plots.
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024, https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Short summary
The age of some geological materials can be estimated from the ratio of certain radiogenic "daughter" isotopes to their radioactive "parent". However, in many cases, the age estimation process is complicated by the presence of an inherited component of non-radiogenic daughter isotopes. This paper presents an improved algorithm to estimate the radiogenic and non-radiogenic components, either separately or jointly.
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024, https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024, https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Short summary
Sedimentary provenance refers to the study of the origin of sedimentary rocks, tracing where sediment particles originated. Common sedimentary provenance techniques struggle to track mafic igneous and metamorphic rock sources and rutile forms in these rock types. We use rutile form ancient sedimentary rocks in Türkiye to present new recommendations and workflows for integrating rutile U–Pb ages and chemical composition into an accurate sedimentary provenance reconstruction.
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024, https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Short summary
We demonstrate a machine learning method to estimate the temperature changes in the Earth's crust over time. The method respects physical laws and conditions imposed by users. By using observed rock cooling ages as constraints, the method can be used to estimate the tectonic and landscape evolution of the Earth. We show the applications of the method using a synthetic rock uplift model in 1D and an evolution model of a real mountain range in 3D.
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024, https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Short summary
Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in zircon U–Pb geochronology. However, CA has yet to be applied to large-n detrital zircon (DZ) analyses. We show that CA does not negatively impact or systematically bias U–Pb dates, improves the resolution of age populations defined by 206Pb/238U dates, and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates.
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023, https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
Short summary
We propose using the Wasserstein-2 distance (W2) as an alternative to the widely used Kolmogorov–Smirnov (KS) statistic for analysing distributional data in geochronology. W2 measures the horizontal distance between observations, while KS measures vertical differences in cumulative distributions. Using case studies, we find that W2 is preferable in scenarios where the absolute age differences in observations provide important geological information. W2 has been added to the R package IsoplotR.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Michael C. Sitar and Ryan J. Leary
Geochronology, 5, 109–126, https://doi.org/10.5194/gchron-5-109-2023, https://doi.org/10.5194/gchron-5-109-2023, 2023
Short summary
Short summary
We developed code to automatically and semi-automatically measure dimensions of detrital mineral grains in reflected-light images saved at laser ablation–inductively coupled plasma–mass spectrometry facilities that use Chromium targeting software. Our code uses trained deep learning models to segment grain images with greater accuracy than is achievable using other segmentation techniques. We implement our code in Jupyter notebooks which can also be run online via Google Colab.
Peter E. Martin, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 91–107, https://doi.org/10.5194/gchron-5-91-2023, https://doi.org/10.5194/gchron-5-91-2023, 2023
Short summary
Short summary
There is currently no standardized method of performing uncertainty propagation in the (U–Th) / He system, causing data interpretation difficulties. We present two methods of uncertainty propagation and describe free, open-source software (HeCalc) to apply them. Compilation of real data using only analytical uncertainty as well as 2 % and 5 % uncertainties in FT yields respective median relative date uncertainties of 2.9 %, 3.3 %, and 5.0 % for apatites and 1.7 %, 3.3 %, and 5.0 % for zircons.
Stella Birlo, Wojciech Tylmann, and Bernd Zolitschka
Geochronology, 5, 65–90, https://doi.org/10.5194/gchron-5-65-2023, https://doi.org/10.5194/gchron-5-65-2023, 2023
Short summary
Short summary
Sediment cores from the volcanic lake Holzmaar provide a very precise chronology based on tree-ring-like annual laminations or varves. We statistically combine this varve chronology with radiometric dating and tested three different methods to upgrade the age–depth model. However, only one of the three methods tested improved the dating accuracy considerably. With this work, an overview of different age integration methods is discussed and made available for increased future demands.
Peter van der Beek and Taylor F. Schildgen
Geochronology, 5, 35–49, https://doi.org/10.5194/gchron-5-35-2023, https://doi.org/10.5194/gchron-5-35-2023, 2023
Short summary
Short summary
Thermochronometric data can provide unique insights into the patterns of rock exhumation and the driving mechanisms of landscape evolution. Several well-established thermal models allow for a detailed exploration of how cooling rates evolved in a limited area or along a transect, but more regional analyses have been challenging. We present age2exhume, a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from large regional thermochronologic datasets.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Aratz Beranoaguirre, Iuliana Vasiliev, and Axel Gerdes
Geochronology, 4, 601–616, https://doi.org/10.5194/gchron-4-601-2022, https://doi.org/10.5194/gchron-4-601-2022, 2022
Short summary
Short summary
U–Pb dating by the in situ laser ablation mass spectrometry (LA-ICPMS) technique requires reference materials of the same nature as the samples to be analysed. Here, we have explored the suitability of using carbonate materials as a reference for sulfates, since there is no sulfate reference material. The results we obtained are satisfactory, and thus, from now on, the sulfates can also be analysed.
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022, https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary
Short summary
Secondary ion mass spectrometry (SIMS) is the oldest and most sensitive analytical technique for in situ U–Pb geochronology. This paper introduces a new algorithm for SIMS data reduction that treats data as
compositional data, which means that the relative abundances of 204Pb, 206Pb, 207Pb, and 238Pb are processed within a tetrahedral data space or
simplex. The new method is implemented in an eponymous computer programme that is compatible with the two dominant types of SIMS instruments.
Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian
Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022, https://doi.org/10.5194/gchron-4-501-2022, 2022
Short summary
Short summary
Apatite and zircon are the most widely used minerals for dating rocks, but they can be difficult to identify in some crushed rock samples. Incorrect mineral identification results in wasted analytical resources and inaccurate data. We show how X-ray computed tomography can be used to efficiently and accurately distinguish apatite from zircon based on density variations, and provide non-destructive 3D grain-specific size, shape, and inclusion information for improved data quality.
Dale R. Issler, Kalin T. McDannell, Paul B. O'Sullivan, and Larry S. Lane
Geochronology, 4, 373–397, https://doi.org/10.5194/gchron-4-373-2022, https://doi.org/10.5194/gchron-4-373-2022, 2022
Short summary
Short summary
Phanerozoic sedimentary rocks of northern Canada have compositionally heterogeneous detrital apatite with high age dispersion caused by differential thermal annealing. Discrete apatite fission track kinetic populations with variable annealing temperatures are defined using elemental data but are poorly resolved using conventional parameters. Inverse thermal modelling of samples from northern Yukon reveals a record of multiple heating–cooling cycles consistent with geological constraints.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, https://doi.org/10.5194/gchron-4-269-2022, 2022
Short summary
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Yang Li and Pieter Vermeesch
Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021, https://doi.org/10.5194/gchron-3-415-2021, 2021
Short summary
Short summary
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d, where P is the radioactive parent, D is the radiogenic daughter, and d is a second isotope of the daughter element. The slope of this line is proportional to the age of the system. An inverse isochron is a linear fit through d/D and P/D. The horizontal intercept of this line is inversely proportional to the age. The latter approach is preferred when d<D, which is the case in Re–Os and K–Ca geochronology.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Kalin T. McDannell and Dale R. Issler
Geochronology, 3, 321–335, https://doi.org/10.5194/gchron-3-321-2021, https://doi.org/10.5194/gchron-3-321-2021, 2021
Short summary
Short summary
We generated a synthetic dataset applying published kinetic models and distinct annealing kinetics for the apatite fission track and (U–Th)/He methods using a predetermined thermal history. We then tested how well the true thermal history could be recovered under different data interpretation schemes and geologic constraint assumptions using the Bayesian QTQt software. Our results demonstrate that multikinetic data increase time–temperature resolution and can constrain complex thermal histories.
Birk Härtel, Raymond Jonckheere, Bastian Wauschkuhn, and Lothar Ratschbacher
Geochronology, 3, 259–272, https://doi.org/10.5194/gchron-3-259-2021, https://doi.org/10.5194/gchron-3-259-2021, 2021
Short summary
Short summary
We carried out thermal annealing experiments between 500 and 1000 °C to determine the closure temperature of radiation-damage annealing in zircon (ZrSiO4). Our results show that the different Raman bands of zircon respond differently to annealing. The repair is highest for the external rotation Raman band near 356.6 cm−1. The closure temperature estimates range from 250 to 370 °C for different bands. The differences in closure temperatures offer the prospect of multi-T zircon Raman dating.
Pieter Vermeesch
Geochronology, 3, 247–257, https://doi.org/10.5194/gchron-3-247-2021, https://doi.org/10.5194/gchron-3-247-2021, 2021
Short summary
Short summary
This paper shows that the current practice of filtering discordant U–Pb data based on the relative difference between the 206Pb/238U and 207Pb/206Pb ages is just one of several possible approaches to the problem and demonstrably not the best one. An alternative approach is to define discordance in terms of isotopic composition, as a log ratio distance between the measurement and the concordia line. Application to real data indicates that this reduces the positive bias of filtered age spectra.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Roger Powell, Eleanor C. R. Green, Estephany Marillo Sialer, and Jon Woodhead
Geochronology, 2, 325–342, https://doi.org/10.5194/gchron-2-325-2020, https://doi.org/10.5194/gchron-2-325-2020, 2020
Short summary
Short summary
The standard approach to isochron calculation assumes that the distribution of uncertainties on the data arising from isotopic analysis is strictly Gaussian. This excludes datasets that have more scatter, even though many appear to have age significance. Our new approach requires only that the central part of the uncertainty distribution of the data defines a "spine" in the trend of the data. A robust statistics approach is used to locate the spine, and an implementation in Python is given.
Simon J. E. Large, Jörn-Frederik Wotzlaw, Marcel Guillong, Albrecht von Quadt, and Christoph A. Heinrich
Geochronology, 2, 209–230, https://doi.org/10.5194/gchron-2-209-2020, https://doi.org/10.5194/gchron-2-209-2020, 2020
Short summary
Short summary
The integration of zircon geochemistry and U–Pb geochronology (petrochronology) allows us to improve our understanding of magmatic processes. Here we could reconstruct the ~300 kyr evolution of the magma reservoir that sourced the magmas, fluids and metals to form the Batu Hijau porphyry Cu–Au deposit. The application of in situ LA-ICP-MS and high-precision CA–ID–TIMS geochronology to the same zircons further allowed an assessment of the strengths and limitations of the different techniques.
Julia Kalanke, Jens Mingram, Stefan Lauterbach, Ryskul Usubaliev, Rik Tjallingii, and Achim Brauer
Geochronology, 2, 133–154, https://doi.org/10.5194/gchron-2-133-2020, https://doi.org/10.5194/gchron-2-133-2020, 2020
Short summary
Short summary
Our study presents the first seasonally laminated (varved) sediment record covering almost the entire Holocene in high mountainous arid Central Asia. The established floating varve chronology is confirmed by two terrestrial radiocarbon dates, whereby aquatic radiocarbon dates reveal decreasing reservoir ages up core. Changes in seasonal deposition characteristics are attributed to changes in runoff and precipitation and/or to evaporative summer conditions.
Pieter Vermeesch
Geochronology, 2, 119–131, https://doi.org/10.5194/gchron-2-119-2020, https://doi.org/10.5194/gchron-2-119-2020, 2020
Short summary
Short summary
The U–Pb method is one of the most powerful and versatile methods in the geochronological toolbox. With two isotopes of uranium decaying to two different isotopes of lead, the U–Pb method offers an internal quality control that is absent from most other geochronological techniques. U-bearing minerals often contain significant amounts of Th, which decays to a third Pb isotope. This paper presents an algorithm to jointly process all three chronometers at once.
Jon Woodhead and Joseph Petrus
Geochronology, 1, 69–84, https://doi.org/10.5194/gchron-1-69-2019, https://doi.org/10.5194/gchron-1-69-2019, 2019
Short summary
Short summary
Recently developed methods for in situ U–Pb age determination in carbonates have found widespread application, but the benefits and limitations of the method over bulk analysis approaches have yet to be fully explored. Here we use speleothems – cave carbonates such as stalagmites and flowstones – to investigate the utility of these in situ dating methodologies for challenging matrices with low U and Pb contents and predominantly late Cenozoic ages.
Cited articles
Anderson, A. J., Hodges, K. V., and van Soest, M. C.: Empirical constraints on the effects of radiation damage on helium diffusion in zircon, Geochim. Cosmochim. Ac., 218, 308–322, https://doi.org/10.1016/j.gca.2017.09.006, 2017.
Boyce, J. W., Hodges, K. V., Olszewski, W. J., Jercinovic, M. J., Carpenter, B. D., and Reiners, P. W.: Laser microprobe (U–Th)/He geochronology, Geochim. Cosmochim. Ac., 70, 3031–3039. https://doi.org/10.1016/j.gca.2006.03.019, 2006.
Bragg, W. H., and Kleeman, R.: On the α particles of radium, and their loss of range in passing through various atoms and molecules, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10, 318–340, https://doi.org/10.1080/14786440509463378, 1905.
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P.: Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He thermochronometer, Geochim. Cosmochim. Ac., 122, 478–497, https://doi.org/10.1016/j.gca.2013.05.041, 2013.
Chew, D. M., Petrus, J. A., Kenny, G. G., and McEvoy, N.: Rapid high-resolution U–Pb LA-Q-ICPMS age mapping of zircon, J. Anal. Atom. Spectr., 32, 262–276, https://doi.org/10.1039/C6JA00404K, 2017.
Dunkl, I., Malis, F., Lünsdorf, N. K., Schönig, J., and Von Eynatten, H.: Zircon U-Pb-He Double Dating of Modern Sands From the Inn River Catchment: Assessing Resolution and Potential in a Complex Orogenic Setting, J. Geophys. Res.-Earth., 129, e2023JF007360, https://doi.org/10.1029/2023JF007360, 2024.
Ehlers, T. A.: Crustal Thermal Processes and the Interpretation of Thermochronometer Data, Rev. Mineral. Geochem., 58, 315–350, https://doi.org/10.2138/rmg.2005.58.12, 2005.
Ehlers, T. A. and Farley, K. A.: Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes, Earth Planet. Sc. Lett., 206, 1–14, https://doi.org/10.1016/S0012-821X(02)01069-5, 2003.
Evans, N. J., McInnes, B. I. A., McDonald, B., Danišík, M., Becker, T., Vermeesch, P., Shelley, M., Marillo-Sialer, E., and Patterson, D. B.: An in situ technique for (U–Th–Sm)/He and U–Pb double dating, J. Anal. Atom. Spectr., 30, 1636–1645, https://doi.org/10.1039/C5JA00085H, 2015.
Danišík, M., McInnes, B. I. A., Kirkland, C. L., McDonald, B. J., Evans, N. J., and Becker, T.: Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals, Sci. Adv., 3, e1601121, https://doi.org/10.1126/sciadv.1601121, 2017.
Falkowski, S., Ehlers, T. A., McQuarrie, N., Glover, C. O., Perez, N. D., and Buford Parks, V. M.: Exhumation and incision of the eastern Central Andes, southern Peru: Low-temperature thermochronology observations, Earth Planet. Sc. Lett., 620, 118299, https://doi.org/10.1016/j.epsl.2023.118299, 2023.
Farley, K. A.: Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite, J. Geophys. Res.-Sol. Ea., 105, 2903–2914, https://doi.org/10.1029/1999JB900348, 2000.
Farley, K. A.: (U-Th-Sm) He Dating: Techniques, Calibrations, and Applications, Rev. Mineral. Geochem., 47, 819–844, https://doi.org/10.2138/rmg.2002.47.18, 2002.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long alpha-stopping distances on (U-Th-Sm) He dates, Geoch. Cosmochim. Ac., 60, 4223–4229, https://doi.org/10.1016/s0016-7037(96)00193-7, 1996.
Farley, K. A., Shuster, D. L., Watson, E. B., Wanser, K. H., and Balco, G.: Numerical investigations of apatite 4He/3He thermochronometry: APATITE 4He/3He THERMOCHRONOMETRY, Geochem. Geophy. Geosy., 11, Q10001, https://doi.org/10.1029/2010GC003243, 2010.
Farley, K. A., Shuster, D. L., and Ketcham, R. A.: U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system, Geochim. Cosmochim. Ac., 75, 4515–4530, https://doi.org/10.1016/j.gca.2011.05.020, 2011.
Flowers, R. M.: Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions, Earth Planet. Sc. Lett., 277, 148–155, https://doi.org/10.1016/j.epsl.2008.10.005, 2009.
Flowers, R. M. and Farley, K. A.: Apatite 4He/3He and (U-Th)/He Evidence for an Ancient Grand Canyon, Science, 338, 1616–1619, https://doi.org/10.1126/science.1229390, 2012.
Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A.: Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model, Geochim. Cosmochim. Ac., 73, 2347–2365, https://doi.org/10.1016/j.gca.2009.01.015, 2009.
Flowers, R. M., Ketcham, R. A., Enkelmann, E., Gautheron, C., Reiners, P. W., Metcalf, J. R., Danišík, M., Stockli, D. F., and Brown, R. W.: (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data, GSA Bull., 132, 137–161, https://doi.org/10.1130/B36268.1, 2023.
Fox, M., McKeon, R. E., and Shuster, D. L.: Incorporating 3-D parent nuclide zonation for apatite 4He/3He thermochronometry: An example from the Appalachian Mountains, Geochem. Geophy. Geosy., 15, 4217–4229, https://doi.org/10.1002/2014GC005464, 2014.
Fox, M., Tripathy-Lang, A., and Shuster, D. L.: Improved spatial resolution of elemental maps through inversion of LA-ICP-MS data, Chem. Geol., 467, 30–41, https://doi.org/10.1016/j.chemgeo.2017.07.001, 2017.
Gallagher, K., Brown, R., and Johnson, C.: Fission track analysis and its applications to geological problems, Ann. Rev. Earth Planet. Sci., 26, 519–572, https://doi.org/10.1146/annurev.earth.26.1.519, 1998.
Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M.: Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology, Chem. Geol., 266, 157–170, https://doi.org/10.1016/j.chemgeo.2009.06.001, 2009.
Gautheron, C., Tassan-Got, L., Ketcham, R. A., and Dobson, K. J.: Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion, Geochim. Cosmochim. Ac., 96, 44–56, https://doi.org/10.1016/j.gca.2012.08.016, 2012.
Glotzbach, C.: Interpreting cooling dates and histories from laser ablation in-situ (U-Th-Sm)/He thermochronometry, Zenodo [code], https://doi.org/10.5281/zenodo.13898183, 2024.
Glotzbach, C., Lang, K. A., Avdievitch, N. N., and Ehlers, T. A.: Increasing the accuracy of (U-Th(-Sm))/He dating with 3D grain modelling, Chem. Geol., 506, 113–125, https://doi.org/10.1016/j.chemgeo.2018.12.032, 2019.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester, G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th-Sm) He thermochronology, Am. J. Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013.
Guenthner, W. R., Reiners, P. W., Drake, H., and Tillberg, M.: Zircon, titanite, and apatite (U-Th-Sm) He dates and date-eU correlations from the Fennoscandian Shield, southern Sweden: Fennoscandian Zirc He Date-eU Correlation, Tectonics, 36, 1254–1274, https://doi.org/10.1002/2017TC004525, 2017.
Horne, A. M., van Soest, M. C., Hodges, K. V., Tripathy-Lang, A., and Hourigan, J. K.: Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals – Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff, Geochim. Cosmochim. Ac., 178, 106–123, https://doi.org/10.1016/j.gca.2015.11.044, 2016.
Horne, A. M., van Soest, M. C., and Hodges, K. V.: U/Pb and (U-Th-Sm) He “double” dating of detrital apatite by laser ablation: A critical evaluation, Chem. Geol., 506, 40–50, https://doi.org/10.1016/j.chemgeo.2018.12.004, 2019.
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry, Geochim. Cosmochim. Ac., 69, 3349–3365, https://doi.org/10.1016/j.gca.2005.01.024, 2005.
Ketcham, R. A.: Forward and Inverse Modeling of Low-Temperature Thermochronometry Data, Rev. Mineral. Geochem., 58, 275–314, https://doi.org/10.2138/rmg.2005.58.11, 2005.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case, Geochim. Cosmochim. Ac., 75, 7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Kirstein, L. A., Foeken, J. P. T., van der Beek, P., Stuart, F. M., and Phillips, R. J.: Cenozoic unroofing history of the Ladakh Batholith, western Himalaya, constrained by thermochronology and numerical modelling, J. Geol. Soc., 166, 667–678, https://doi.org/10.1144/0016-76492008-107, 2009.
Lippolt, H. J., Leitz, M., Wernicke, R. S., and Hagedorn, B.: (Uranium + thorium)/helium dating of apatite: experience with samples from different geochemical environments, Chem. Geol., 112, 179–191, https://doi.org/10.1016/0009-2541(94)90113-9, 1994.
Malusà, M. G. and Fitzgerald, P. G. (Eds.): Fission-track thermochronology and its application to geology, Springer, 393 pp., https://doi.org/10.1007/978-3-319-89421-8, 2019.
Meesters, A. G. C. A., and Dunai, T. J.: Solving the production–diffusion equation for finite diffusion domains of various shapes, Chem. Geol., 186, 333–344, https://doi.org/10.1016/S0009-2541(01)00422-3, 2002.
North, R., White, L. T., Nancarrow, M., Dosseto, A., and Tanner, D.: Sub-Micrometre Resolution FIB-SEM-based ToF-SIMS Used to Map Geochemical Zoning in Four Zircon Reference Materials, Geostand. Geoanal. Res., 47, 125–142, https://doi.org/10.1111/ggr.12463, 2023.
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., and Maas, R.: Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction, Geochem. Geophys. Geosy., 11, Q0AA06, https://doi.org/10.1029/2009GC002618, 2010.
Pickering, J., Matthews, W., Enkelmann, E., Guest, B., Sykes, C., and Koblinger, B. M.: Laser ablation (U-Th-Sm) He dating of detrital apatite, Chem. Geol., 548, 119683, https://doi.org/10.1016/j.chemgeo.2020.119683, 2020.
Reiners, P. W.: Zircon (U-Th-Sm) He Thermochronometry, Rev. Mineral Geochem., 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6, 2005.
Reiners, P. W. and Ehlers, T. A.: Low-temperature thermochronology: Techniques, interpretations and applications, Rev. Mineral. Geochem., 58, https://doi.org/10.2138/rmg.2005.58.0, 2005.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Pl. Sci., 34, 419–466, https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Shuster, D. L. and Farley, K. A.: 4He/3He thermochronometry, Earth Planet. Sc. Lett., 217, 1–17, https://doi.org/10.1016/S0012-821X(03)00595-8, 2004.
Sousa, F. J., Cox, S. E., Rasbury, E. T., Hemming, S. R., Lanzirotti, A., and Newville, M.: U and Th zonation in apatite observed by synchrotron X-ray fluorescence tomography and implications for the (U–Th)/He system, Geochronology, 6, 553–570, https://doi.org/10.5194/gchron-6-553-2024, 2024.
Spiegel, C., Kohn, B., Belton, D., Berner, Z., and Gleadow, A.: Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation, Earth Planet. Sc. Lett., 285, 105–114, https://doi.org/10.1016/j.epsl.2009.05.045, 2009.
Tripathy-Lang, A., Hodges, K. V., Monteleone, B. D., and van Soest, M. C.: Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments, J. Geophys. Res.-Earth, 118, 1333–1341. https://doi.org/10.1002/jgrf.20091, 2013.
Vermeesch, P., Seward, D., Latkoczy, C., Wipf, M., Günther, D., and Baur, H.: α-Emitting mineral inclusions in apatite, their effect on (U–Th)/He dates, and how to reduce it, Geochim. Cosmochim. Ac., 71, 1737–1746, https://doi.org/10.1016/j.gca.2006.09.020, 2007.
Vermeesch, P., Sherlock, S. C., Roberts, N. M. W., and Carter, A.: A simple method for in-situ U–Th–He dating, Geochim. Cosmochim. Ac., 79, 140–147, https://doi.org/10.1016/j.gca.2011.11.042, 2012.
Vermeesch, P., Tian, Y., Schwanethal, J., and Buret, Y.: Technical note: In situ U–Th–He dating by 4He/3He laser microprobe analysis, Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023, 2023.
Wolf, R. A., Farley, K. A., and Silver, L. T.: Helium diffusion and low-temperature thermochronometry of apatite, Geochim. Cosmochim. Ac., 60, 4231–4240, https://doi.org/10.1016/s0016-7037(96)00192-5, 1996.
Wolf, R. A., Farley, K. A., and Kass, D. M.: Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer, Chem. Geol., 148, 105–114, https://doi.org/10.1016/S0009-2541(98)00024-2, 1998.
Ziegler, J. F., Ziegler, M. D., and Biersack, J. P.: SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Methods B, 268, 1818–1823, https://doi.org/10.1016/j.nimb.2010.02.091, 2010.
Short summary
The (U–Th–Sm) / He dating method helps understand the cooling history of rocks. Synthetic modelling experiments were conducted to explore factors affecting in situ vs. whole-grain (U–Th) / He dates. In situ dates are often 30 % older than whole-grain dates, whereas very rapid cooling makes helium loss negligible, resulting in similar whole-grain and in situ dates. In addition, in situ data can reveal cooling histories even from a single grain by measuring helium distributions.
The (U–Th–Sm) / He dating method helps understand the cooling history of rocks. Synthetic...